Previous studies have found that the macrophage migration inhibitor factor is associated with endothelial dysfunction and ventricular remodelling. The aim of this study was to explore the potential relationship between plasma macrophage migration inhibitor factor levels and hypertension and hypertensive left ventricular hypertrophy. A total of 308 participants (including 187 uncomplicated hypertensive patients and 121 healthy controls) were enroled from 2017 to 2019. The association between macrophage migration inhibitor factors and hypertension and hypertensive left ventricular hypertrophy was estimated with univariate and multivariate logistic regression models. Elevated macrophage migration inhibitor factor was associated with the development of hypertension (second tertile: adjusted OR, 2.27, 95% CI, 1.24-4.16, P = 0.008; third tertile: adjusted OR, 5.43, 95% CI, 2.75-10.71, P < 0.001; compared with the first tertile). In addition, we assessed the association between macrophage migration inhibitor factor and left ventricular hypertrophy in hypertensive patients (n = 187). Plasma macrophage migration inhibitor factor was significantly correlated with hypertensive left ventricular mass index (r = 0.580, P < 0.001). In patients with hypertension, an elevated macrophage migration inhibitor factor was significantly associated with hypertensive left ventricular hypertrophy (second tertile: adjusted OR, 3.20, 95% CI, 1.17-8.78, P = 0.024; third tertile: adjusted OR, 24.95, 95% CI, 8.72-71.41, P < 0.001; compared with the first tertile). Receiver operating characteristic analysis indicated that macrophage migration inhibitor factor had reasonable predictive accuracy for the development of hypertensive left ventricular hypertrophy (area under curve 0.84, 95% CI 0.78-0.90, P < 0.001). Our data indicated that elevated macrophage migration inhibitor factor is associated with hypertension and hypertensive left ventricular hypertrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41371-022-00657-1 | DOI Listing |
Biomark Res
January 2025
BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored.
View Article and Find Full Text PDFCardiovasc Toxicol
January 2025
Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China.
Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Nutrients
January 2025
Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.
: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.
View Article and Find Full Text PDFMicroorganisms
January 2025
Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
Tuberculosis (TB) remains the major cause of mortality and morbidity, causing approximately 1.3 million deaths annually. As a highly successful pathogen, () has evolved numerous strategies to evade host immune responses, making it essential to understand the interactions between and host cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!