Disposal of electrons generated during the fermentation of ingested feed is a fundamental feature of anaerobic microbial gut ecosystems. Here, we focus on the well-studied rumen environment to highlight how electrons are transferred through anaerobic fermentation pathways and how manipulating this electron flow is important to reducing methane emissions from ruminants. Priorities for research that can accelerate understanding in this area are highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2021.12.005DOI Listing

Publication Analysis

Top Keywords

electron flow
8
flow key
4
key mitigating
4
mitigating ruminant
4
ruminant methanogenesis
4
methanogenesis disposal
4
disposal electrons
4
electrons generated
4
generated fermentation
4
fermentation ingested
4

Similar Publications

Structural insight into sodium ion pathway in the bacterial flagellar stator from marine .

Proc Natl Acad Sci U S A

January 2025

Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.

Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.

View Article and Find Full Text PDF

Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.

View Article and Find Full Text PDF

Genetic investigation of hydrogenases in suggests that redox balance via hydrogen cycling enables high ethanol yield.

Appl Environ Microbiol

January 2025

Centro de Engenharia Genética e Biologia Molecular (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.

Unlabelled: is an anaerobic and thermophilic bacterium that has been genetically engineered for ethanol production at very high yields. However, the underlying reactions responsible for electron flow, redox equilibrium, and how they relate to ethanol production in this microbe are not fully elucidated. Therefore, we performed a series of genetic manipulations to investigate the contribution of hydrogenase genes to high ethanol yield, generating evidence for the importance of hydrogen-reacting enzymes in ethanol production.

View Article and Find Full Text PDF

Background: Neuroinflammation is one of the essential pathogeneses of cognitive damage suffering from sepsis-associated encephalopathy (SAE). Lots of evidences showed the microglia presented mitochondrial fragmentation during SAE. This study investigated the protective effects and novel mechanisms of inhibiting microglia mitochondrial fragmentation via mitochondrial division inhibitor 1 (Mdivi-1) on cognitive damage in SAE.

View Article and Find Full Text PDF

Background: Ethylenediamine tetraacetate/glycine acid (EGA) and chloroquine diphosphate (CDP) are used in transfusion testing to dissociate IgG antibodies from red blood cells (RBCs). However, the ability of these reagents to dissociate IgM antibodies sensitized to RBCs has not been comprehensively elucidated. We investigated whether EGA and CDP could dissociate cold-reactive antibodies from RBCs and their effect on RBCs after dissociation treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!