The structures of two polysaccharides from Angelica sinensis and their effects on hepatic insulin resistance through blocking RAGE.

Carbohydr Polym

Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China. Electronic address:

Published: March 2022

This study found two novel homogeneous polysaccharides from Angelica sinensis, APS-1I and APS-2II, binding to RAGE with a dissociation constant of 2.02 ± 0.2 and 85.92 ± 0.2 μM, respectively. APS-1I is a 17.0 kDa heteropolysaccharide, whose backbone is composed of α-1,6-Glcp, α-1,3,6-Glcp, α-1,2-Glcp, α-1,4-Galp, and α-1,3-Rhap, and whose two branches contain α-1,3,5-Araf, α-1,3-Araf, α-1,4-Galp, β-1,3-Galp, and β-1,4-Glcp. APS-2II is a 10.0 kDa linear glucan, that contains α-1,6-Glcp, α-1,3-Glcp, α-1,2-Glcp, and α-T-Glcp. In vitro, APS-1I demonstrated better promotion on glucose absorption and stronger repression on p-IRS-1 (Ser307), p-IRS-2 (Ser731), p-JNK, and p-P38 than APS-2II in insulin resistance (IR)-HepG2 cells. Furthermore, APS-1I treatment couldn't further decrease the inhibition on the phosphorylation of JNK and P38 produced by RAGE siRNA in IR-HepG2 cells. In vivo, APS-1I markedly improved IR and reversed the livers RAGE-JNK/p38-IRS signaling in high-fat-diet and streptozotocin-induced diabetic rats, suggesting that APS-1I could be a potential agent for improving IR in type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.119001DOI Listing

Publication Analysis

Top Keywords

polysaccharides angelica
8
angelica sinensis
8
insulin resistance
8
ir-hepg2 cells
8
aps-1i
6
structures polysaccharides
4
sinensis effects
4
effects hepatic
4
hepatic insulin
4
resistance blocking
4

Similar Publications

Active herbal ingredients and drug delivery design for tumor therapy: a review.

Chin J Nat Med

December 2024

National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic address:

Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy.

View Article and Find Full Text PDF

Neuroinflammation, especially microglia/macrophage activation, is a hallmark of spinal cord injury (SCI). Jisuikang (JSK) is a clinical experiential Chinese herbal formula for SCI therapy containing Huangqi (Astragali Radix), Danggui (Angelica sinensis Radix), Chishao (Paeoniae Radix Rubra), Dilong (earthworm, Pheretima aspergillum), Chuanxiong (Chuanxiong Rhizoma), Taoren (Persicae Seman) and Honghua (Carthami Flos). Eighteen active ingredients in 6 herbs of JSK were found to be correlated with inflammation, spinal injury and other diseases.

View Article and Find Full Text PDF

Folic-acid-targeted drug delivery system implementing Angelica gigas polysaccharide: A potential strategy for colorectal cancer treatment.

Int J Biol Macromol

December 2024

Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea. Electronic address:

The study focuses on the development of folate-targeted conjugates utilizing Angelica gigas polysaccharide (F2) as a drug carrier for colorectal cancer therapy. We synthesized F2-C-5-FU conjugates by linking carboxymethyl-5-fluorouracil (C-5-FU) with folic acid (FA) through ester bonding. The drug release behavior of F2-C-5-FU-FA was pH-dependent, favoring release under alkaline conditions.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Dysfunction of the intestinal barrier was an important trigger for alcoholic liver damage and alcohol had brought about intestinal damage before causing liver damage. The root of Angelica sinensis (Oliv.) Diels, crucial traditional medicinal material, was widely utilized for its blood-invigorating, intestinal-lubricating and gynecological benefits.

View Article and Find Full Text PDF

Angelica sinensis polysaccharides mitigate cadmium-induced apoptosis in layer chicken chondrocytes by inhibiting the JNK signaling pathway.

Int J Biol Macromol

December 2024

Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China. Electronic address:

Cadmium (Cd), a toxic heavy metal pollutant, inflicts widespread damage on various organs and tissues, including cartilage, where it induces chondrocyte apoptosis. Angelica sinensis polysaccharides (ASP), a key active component of the traditional Chinese medicine Angelica sinensis, have been shown to possess anti-apoptotic effects on chondrocytes. This study investigates the in vitro effects of ASP on alleviating Cd-induced apoptosis in layer chicken chondrocytes, focusing on the mitochondrial apoptosis pathway mediated by the c-Jun N-terminal kinase (JNK) signaling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!