Machine Learning of Microscopic Ingredients for Graphene Oxide/Cellulose Interaction.

Langmuir

Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, São Paulo 13083-970, Brazil.

Published: January 2022

AI Article Synopsis

  • Understanding microscopic attributes in nanocomposites helps improve and speed up system designs.
  • This study focuses on the binding strength between graphene oxide and cellulose, utilizing first-principles calculations combined with machine learning.
  • We classify the systems by binding energies and validate our findings through theoretical X-ray photoelectron spectroscopy, ultimately offering a framework for better control of graphene oxide/cellulose interactions.

Article Abstract

Understanding the role of microscopic attributes in nanocomposites allows one to control and, therefore, accelerate experimental system designs. In this work, we extracted the relevant parameters controlling the graphene oxide binding strength to cellulose by combining first-principles calculations and machine learning algorithms. We were able to classify the systems among two classes with higher and lower binding energies, which are well defined based on the isolated graphene oxide features. Using theoretical X-ray photoelectron spectroscopy analysis, we show the extraction of these relevant features. In addition, we demonstrate the possibility of refined control within a machine learning regression between the binding energy values and the system's characteristics. Our work presents a guiding map to control graphene oxide/cellulose interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c02780DOI Listing

Publication Analysis

Top Keywords

machine learning
12
graphene oxide/cellulose
8
oxide/cellulose interaction
8
graphene oxide
8
learning microscopic
4
microscopic ingredients
4
graphene
4
ingredients graphene
4
interaction understanding
4
understanding role
4

Similar Publications

The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).

View Article and Find Full Text PDF

Machine Learning Boosted Entropy-Engineered Synthesis of CuCo Nanometric Solid Solution Alloys for Near-100% Nitrate-to-Ammonia Selectivity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China.

Nanometric solid solution alloys are utilized in a broad range of fields, including catalysis, energy storage, medical application, and sensor technology. Unfortunately, the synthesis of these alloys becomes increasingly challenging as the disparity between the metal elements grows, due to differences in atomic sizes, melting points, and chemical affinities. This study utilized a data-driven approach incorporating sample balancing enhancement techniques and multilayer perceptron (MLP) algorithms to improve the model's ability to handle imbalanced data, significantly boosting the efficiency of experimental parameter optimization.

View Article and Find Full Text PDF

Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.

View Article and Find Full Text PDF

Health care decisions are increasingly informed by clinical decision support algorithms, but these algorithms may perpetuate or increase racial and ethnic disparities in access to and quality of health care. Further complicating the problem, clinical data often have missing or poor quality racial and ethnic information, which can lead to misleading assessments of algorithmic bias. We present novel statistical methods that allow for the use of probabilities of racial/ethnic group membership in assessments of algorithm performance and quantify the statistical bias that results from error in these imputed group probabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!