Hereditary spastic paraplegias are characterized by lower limb spasticity resulting from degeneration of long corticospinal axons. SPG11 is one of the most common autosomal recessive hereditary spastic paraplegias, and the SPG11 protein spatacsin forms a complex with the SPG15 protein spastizin and heterotetrameric AP5 adaptor protein complex, which includes the SPG48 protein AP5Z1. Using the integration-free episomal method, we established SPG11 patient-specific induced pluripotent stem cells (iPSCs) from patient fibroblasts. We differentiated SPG11 iPSCs, as well as SPG48 iPSCs previously established, into cortical projection neurons and examined protective effects by targeting mitochondrial dynamics using P110, a peptide that selectively inhibits mitochondrial fission GTPase Drp1. P110 treatment mitigates mitochondrial fragmentation, improves mitochondrial motility, and restores mitochondrial health and ATP levels in SPG11 and SPG48 neurons. Neurofilament aggregations are increased in SPG11 and SPG48 axons, and these are also suppressed by P110. Similarly, P110 mitigates neurofilament disruption in both SPG11 and SPG48 knockdown cortical projection neurons, confirming the contribution of hereditary spastic paraplegia gene deficiency to subsequent neurofilament and mitochondrial defects. Strikingly, neurofilament aggregations in SPG11 and SPG48 deficient neurons double stain with ubiquitin and autophagy related proteins, resembling the pathological hallmark observed in SPG11 autopsy brain sections. To confirm the cause-effect relationship between the SPG11 mutations and disease phenotypes, we knocked-in SPG11 disease mutations to human embryonic stem cells (hESCs) and differentiated these stem cells into cortical projection neurons. Reduced ATP levels and accumulated neurofilament aggregations along axons are observed, and both are mitigated by P110. Furthermore, rescue experiment with expression of wild-type SPG11 in cortical projection neurons derived from both SPG11 patient iPSCs and SPG11 disease mutation knock-in hESCs leads to rescue of mitochondrial dysfunction and neurofilament aggregations in these SPG11 neurons. Finally, in SPG11 and SPG48 long-term cultures, increased release of phosphoNF-H, a biomarker for nerve degeneration, is significantly reduced by inhibiting mitochondrial fission pharmacologically using P110 and genetically using Drp1 shRNA. Taken together, our results demonstrate that impaired mitochondrial dynamics underlie both cytoskeletal disorganization and axonal degeneration in SPG11 and SPG48 neurons, highlighting the importance of targeting these pathologies therapeutically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200290PMC
http://dx.doi.org/10.1093/brain/awab488DOI Listing

Publication Analysis

Top Keywords

spg11 spg48
24
spg11
17
hereditary spastic
16
cortical projection
16
projection neurons
16
neurofilament aggregations
16
mitochondrial fission
12
stem cells
12
neurons
9
mitochondrial
9

Similar Publications

Movement disorders in hereditary spastic paraplegias.

Arq Neuropsiquiatr

November 2023

Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo SP, Brazil.

Background:  Hereditary or familial spastic paraplegias (SPG) comprise a group of genetically and phenotypically heterogeneous diseases characterized by progressive degeneration of the corticospinal tracts. The complicated forms evolve with other various neurological signs and symptoms, including movement disorders and ataxia.

Objective:  To summarize the clinical descriptions of SPG that manifest with movement disorders or ataxias to assist the clinician in the task of diagnosing these diseases.

View Article and Find Full Text PDF

Hereditary spastic paraplegias are characterized by lower limb spasticity resulting from degeneration of long corticospinal axons. SPG11 is one of the most common autosomal recessive hereditary spastic paraplegias, and the SPG11 protein spatacsin forms a complex with the SPG15 protein spastizin and heterotetrameric AP5 adaptor protein complex, which includes the SPG48 protein AP5Z1. Using the integration-free episomal method, we established SPG11 patient-specific induced pluripotent stem cells (iPSCs) from patient fibroblasts.

View Article and Find Full Text PDF

Childhood-onset hereditary spastic paraplegia and its treatable mimics.

Mol Genet Metab

December 2022

Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Early-onset forms of hereditary spastic paraplegia and inborn errors of metabolism that present with spastic diplegia are among the most common "mimics" of cerebral palsy. Early detection of these heterogenous genetic disorders can inform genetic counseling, anticipatory guidance, and improve outcomes, particularly where specific treatments exist. The diagnosis relies on clinical pattern recognition, biochemical testing, neuroimaging, and increasingly next-generation sequencing-based molecular testing.

View Article and Find Full Text PDF

We describe an additional patient with spastic paraplegia 48 (SPG48). A 52-year-old woman with gradually increasing gait disturbance was admitted to our hospital. When she was 47 years old, acquaintances noted a shuffling gait.

View Article and Find Full Text PDF

Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48.

Brain

July 2014

1 Genetics of Neurodegenerative and Metabolic Diseases Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy

Hereditary spastic paraplegias are a heterogeneous group of neurodegenerative disorders, clinically classified in pure and complex forms. Genetically, more than 70 different forms of spastic paraplegias have been characterized. A subgroup of complicate recessive forms has been distinguished for the presence of thin corpus callosum and white matter lesions at brain imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!