AI Article Synopsis

Article Abstract

On Cu(111) surface and in interaction with a single hexa-tert-butylphenylbenzene molecule-gear, the rotation of a graphene nanodisk was studied using the large-scale atomic/molecular massively parallel simulator molecular dynamics simulator. To ensure a transmission of rotation to the molecule-gear, the graphene nanodisk is functionalized on its circumference by-butylphenyl chemical groups. The rotational motion can be categorized underdriving, driving and overdriving regimes calculating the locking coefficient of this mechanical machinery as a function of external torque applied to the nanodisk. The rotational friction with the surface of both the phononic and electronic contributions is investigated. For small size graphene nanodisks, the phononic friction is the main contribution. Electronic friction dominates for the larger disks putting constrains on the experimental way of achieving the transfer of rotation from a graphene nanodisk to a single molecule-gear.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac4b4bDOI Listing

Publication Analysis

Top Keywords

graphene nanodisk
12
cu111 surface
8
rotation graphene
8
nanographene disk
4
disk rotating
4
rotating single
4
single molecule
4
molecule gear
4
gear cu111
4
surface cu111
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!