DNA repair scaffolds XRCC1 and XRCC4 utilize a phosphopeptide FHA domain binding motif (FBM) of the form Y-x-x-pS-pT-D-E that supports recruitment of three identified FHA domain-containing DNA repair proteins: polynucleotide kinase/phosphatase (PNKP), aprataxin (APTX), and a third protein, APLF, that functions as a scaffold in support of non-homologous end joining (NHEJ). Mammalian dimeric XRCC4 is able to interact with two of these proteins at any given time, while monomeric XRCC1 binds only one. However, sequence analysis indicates that amphibian and teleost XRCC1 generally contain two FHA binding motifs. X1-FBM1, is similar to the single mammalian XRCC1 FBM and probably functions similarly. X1-FBM2, is more similar to mammalian XRCC4 FBM; it is located closer to the XRCC1 BRCT1 domain and probably is less discriminating among its three likely binding partners. Availability of an additional PNKP or APTX recruitment motif may alleviate the bottleneck that results from using a single FBM motif for recruitment of multiple repair factors. Alternatively, recruitment of APLF by X1-FBM2 may function to rescue a misdirected or unsuccessful SSB repair response by redirecting the damaged DNA to the NHEJ pathway, - a need that results from the ambiguity of the PARP1 signal regarding the nature of the damage. Evaluation of XRCC4 FBMs in acanthomorphs, which account for a majority of the reported teleost sequences, reveals the presence of an additional XRCC4-like paralog, distinct from other previously described members of the XRCC4 superfamily. The FBM is typically absent in acanthomorph XRCC4, but present in the XRCC4-like paralog. Modeling suggests that XRCC4 and its paralog may form homodimers or XRCC4-XRCC4-like heterodimers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282668 | PMC |
http://dx.doi.org/10.1016/j.dnarep.2021.103263 | DOI Listing |
J Virol
October 2024
Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA.
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that can cause several cancers, such as Kaposi sarcoma and primary effusion lymphoma (PEL). We and others have recently demonstrated that Forkhead box (FOX) transcription factors can be dysregulated by KSHV, and they can affect KSHV infection. Herein, we focus on dissecting the role of two FOXK subfamily members, FOXK1 and FOXK2, in the KSHV life cycle.
View Article and Find Full Text PDFPlant Mol Biol
April 2023
Institute of Future Agriculture, State Key Laboratory of Crop Stress Biology for Arid Areas, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
The forkhead-associated (FHA) domain, a well-characterized small protein module that mediates protein-protein interactions by targeting motifs containing phosphothreonine, is present in many regulatory molecules like protein kinase, phosphatases, transcription factors, and other functional proteins. FHA-domain containing proteins in yeast and human are involved in a large variety of cellular processes such as DNA repair, cell cycle arrest, or pre-mRNA processing. Since the first FHA-domain protein, kinase-associated protein phosphatase (KAPP) was found in plants, the interest in plant FHA-containing proteins has increased dramatically, mainly due to the important role of FHA domain-containing proteins in plant growth and development.
View Article and Find Full Text PDFDNA Repair (Amst)
February 2022
Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA. Electronic address:
DNA repair scaffolds XRCC1 and XRCC4 utilize a phosphopeptide FHA domain binding motif (FBM) of the form Y-x-x-pS-pT-D-E that supports recruitment of three identified FHA domain-containing DNA repair proteins: polynucleotide kinase/phosphatase (PNKP), aprataxin (APTX), and a third protein, APLF, that functions as a scaffold in support of non-homologous end joining (NHEJ). Mammalian dimeric XRCC4 is able to interact with two of these proteins at any given time, while monomeric XRCC1 binds only one. However, sequence analysis indicates that amphibian and teleost XRCC1 generally contain two FHA binding motifs.
View Article and Find Full Text PDFExp Hematol
October 2020
Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH. Electronic address:
Forkhead-associated (FHA) domain-containing proteins are widely expressed across eubacteria and in eukaryotes. FHA domains contain phosphopeptide recognition motifs, which operate in a variety of phosphorylation-dependent and -independent biological processes, including the DNA damage response, signal transduction, and regulation of the cell cycle. More recently, two FHA domain-containing proteins were discovered in mammalian cells as tumor necrosis factor receptor-associated factor (TRAF)-interacting proteins: TIFA and TIFAB.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2019
Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, Guangdong, China. Electronic address:
Fish nocardiosis is a chronic granulomatous bacterial disease and three pathogens have been reported so far, including Nocardia asteroids, N. seriolae and N. salmonicida.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!