Pre-analytical challenges for the quantification of endocannabinoids in human serum.

J Chromatogr B Analyt Technol Biomed Life Sci

Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany. Electronic address:

Published: February 2022

AI Article Synopsis

Article Abstract

Endocannabinoids (ECs) are potent lipid mediators with high physiological relevance. They are involved in a wide variety of diseases like depression or multiple sclerosis and are closely connected to metabolic parameters in humans. Therefore, their suitability as a biomarker in different (patho-)physiological conditions is discussed intensively and predominantly investigated by analyzing systemic concentrations in easily accessible matrices like blood. Carefully designed pre-analytical sample handling is of major importance for high-quality data, but harmonization is not achieved yet. Whole blood is either processed to serum or plasma before the onset of analytical workflows and while knowledge about pre-analytical challenges in plasma handling is thorough they were not systematically investigated for serum. Therefore, the ECs AEA and 2-AG, and closely related EC-like substances 1-AG, DHEA, and PEA were examined by LC-MS/MS in serum samples of nine healthy volunteers employing different pre-analytical sample handling protocols, including prolonged coagulation, and storage after centrifugation at room temperature (RT) or on ice. Furthermore, all analytes were also assessed in plasma samples obtained from the same individuals at the same time points to investigate the comparability between those two blood-based matrices regarding obtained concentrations and their 2-AG/1-AG ratio. This study shows that ECs and EC-like substances in serum samples were significantly higher than in plasma and are especially prone to ex vivo changes during initial and prolonged storage for coagulation at RT. Storage on ice after centrifugation is less critical. However, storage at RT further increases 1-AG and 2-AG concentrations, while also lowering the already reduced 2-AG/1-AG ratio due to isomerization. Thus, avoidance of prolonged processing at RT can increase data quality if serum as the matrix of choice is unavoidable. However, serum preparation in itself is expected to initiate changes of physiological concentrations as standard precautionary measures like fast and cooled processing can only be utilized by using plasma, which should be the preferred matrix for analyses of ECs and EC-like substances.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2022.123102DOI Listing

Publication Analysis

Top Keywords

ec-like substances
12
pre-analytical challenges
8
pre-analytical sample
8
sample handling
8
serum samples
8
coagulation storage
8
2-ag/1-ag ratio
8
ecs ec-like
8
serum
7
plasma
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!