Genome-wide identification and characterization of F-box family proteins in sweet potato and its expression analysis under abiotic stress.

Gene

Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524088, Guangdong, PR China. Electronic address:

Published: April 2022

AI Article Synopsis

  • The study identified 243 F-box genes (IbFBX) in sweet potato, which are distributed unevenly across its 15 chromosomes, with segmental duplication being a key factor in their evolution.
  • Phylogenetic analysis showed that these IbFBX proteins are grouped into six clades, with similar gene structures found within the same clade.
  • The expression levels of IbFBX genes varied significantly across nine tissues and in response to salt and drought stress, indicating their crucial roles in handling abiotic stress and providing a foundation for future sweet potato breeding efforts.

Article Abstract

In this study, genome-wide characterization of F-box proteins in sweet potato yielded 243 IbFBX genes, unevenly distributed on the 15 chromosomes of sweet potato. Gene duplication analysis suggested segmental duplication as the principal factor influencing the expansive evolution of IbFBX genes in sweet potato. Phylogenetic analysis clustered F-box proteins in sweet potato, Arabidopsis, and rice into six clades (I-VI). Gene structure analysis of the IbFBX genes revealed that most of the genes within the same clade were highly conserved. Expression profiles of IbFBX family genes in 9 different tissues and under stress conditions revealed that the IbFBXs were highly upregulated or downregulated in response to salt and drought stress, suggesting their significant roles in abiotic stress response and adaptation. Knowledge of the diverse functions and expression patterns of IbFBXs presents a solid theoretical basis for annotating the functions of IbFBXs and further facilitate the molecular breeding of sweet potato.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2022.146191DOI Listing

Publication Analysis

Top Keywords

sweet potato
24
proteins sweet
12
ibfbx genes
12
characterization f-box
8
abiotic stress
8
f-box proteins
8
sweet
6
potato
6
genes
5
genome-wide identification
4

Similar Publications

Background: Sweetpotato is a vegetatively propagated crop cultivated worldwide, predominantly in developing countries, valued for its adaptability, short growth cycle, and high productivity per unit land area. In most sub-Saharan African (SSA) countries, it is widely grown by smallholder farmers. Niger, Nigeria, and Benin have a huge diversity of sweetpotato accessions whose potential has not fully been explored to date.

View Article and Find Full Text PDF

The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is a major phytophagous pest that invaded China in late 2018, posing a serious threat to local agricultural production. Therefore, we investigated the effects of maize, soybean, and sweet potato on the growth, development, and reproduction of S. frugiperda under laboratory conditions.

View Article and Find Full Text PDF

First Report of Charcoal Rot Caused by of Sweet Potato in Southern China.

Plant Dis

January 2025

Guangdong Academy of Agricultural Sciences, Crop Research Institute, Wushan Road, Tianhe District, guangzhou, China, 510640;

Sweet potato ( (L.) Lam) is a major food crop that is cultivated in southern China (Huang et al. 2020).

View Article and Find Full Text PDF

Sweet potatoes are a rich source of nutrients and bioactive compounds, but their quality can be impacted by the drying process. This study investigates the impact of slot jet reattachment (SJR) nozzle and ultrasound (US) combined drying (SJR + US) on sweet potato quality, compared to freeze-drying (FD), SJR drying, and hot air drying (HAD). SJR + US drying at 50 °C closely resembled FD in enhancing quality attributes and outperformed HAD and SJR in key areas such as rehydration, shrinkage ratios, and nutritional composition.

View Article and Find Full Text PDF

sp. nov. (Fungi: Orbiliales) from Mexico: Predatory Activity and Nematocidal Activity of Its Liquid Culture Filtrates Against (Nematoda: Trichostrongylidae).

J Fungi (Basel)

December 2024

Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock (INIFAP-AGRICULTURA), Jiutepec 62550, Mexico.

During the isolation, identification, and assessment of nematode-trapping fungi (NTF) against nematodes, we discovered an unusual fungus in decaying wood from Morelos State, Mexico. This isolate exhibited some characteristics similar to those of the genus; however, we found that it did not match any previously reported species within this genus after conducting morphological and phylogenetic analyses using the ITS, TEF, and RPB2 regions. This new species displays conidiophores with two or three stems emerging from the same initial site and conidiophores with only a single stem and aerial thickened hyphae from which single conidiophores emerge, forming 3D adhesive nets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!