A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep brain stimulation electrode modeling in rats. | LitMetric

Deep brain stimulation electrode modeling in rats.

Exp Neurol

Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059 Rostock, Germany; Department Ageing of Individuals and Society, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany; Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany. Electronic address:

Published: April 2022

Deep Brain Stimulation (DBS) is an efficacious treatment option for an increasing range of brain disorders. To enhance our knowledge about the mechanisms of action of DBS and to probe novel targets, basic research in animal models with DBS is an essential research base. Beyond nonhuman primate, pig, and mouse models, the rat is a widely used animal model for probing DBS effects in basic research. Reconstructing DBS electrode placement after surgery is crucial to associate observed effects with modulating a specific target structure. Post-mortem histology is a commonly used method for reconstructing the electrode location. In humans, however, neuroimaging-based electrode localizations have become established. For this reason, we adapt the open-source software pipeline Lead-DBS for DBS electrode localizations from humans to the rat model. We validate our localization results by inter-rater concordance and a comparison with the conventional histological method. Finally, using the open-source software pipeline OSS-DBS, we demonstrate the subject-specific simulation of the VTA and the activation of axon models aligned to pathways representing neuronal fibers, also known as the pathway activation model. Both activation models yield a characterization of the impact of DBS on the target area. Our results suggest that the proposed neuroimaging-based method can precisely localize DBS electrode placements that are essentially rater-independent and yield results comparable to the histological gold standard. The advantages of neuroimaging-based electrode localizations are the possibility of acquiring them in vivo and combining electrode reconstructions with advanced imaging metrics, such as those obtained from diffusion or functional magnetic resonance imaging (MRI). This paper introduces a freely available open-source pipeline for DBS electrode reconstructions in rats. The presented initial validation results are promising.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2022.113978DOI Listing

Publication Analysis

Top Keywords

dbs electrode
16
electrode localizations
12
electrode
9
dbs
9
deep brain
8
brain stimulation
8
neuroimaging-based electrode
8
open-source software
8
software pipeline
8
electrode reconstructions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!