With the advent of high-density micro-electrodes arrays, developing neural probes satisfying the real-time and stringent power-efficiency requirements becomes more challenging. A smart neural probe is an essential device in future neuroscientific research and medical applications. To realize such devices, we present a 22 nm FDSOI SoC with complex on-chip real-time data processing and training for neural signal analysis. It consists of a digitally-assisted 16-channel analog front-end with 1.52 μW/Ch, dedicated bio-processing accelerators for spike detection and classification with 2.79 μW/Ch, and a 125 MHz RISC-V CPU, utilizing adaptive body biasing at 0.5 V with a supporting 1.79 TOPS/W MAC array. The proposed SoC shows a proof-of-concept of how to realize a high-level integration of various on-chip accelerators to satisfy the neural probe requirements for modern applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2022.3142987 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!