Flexible manipulation techniques for living cells and organisms are extremely useful tools for fundamental biomedical and life science research. Acoustic tweezers, which permit non-contact, label-free manipulation, are particularly suited to micromanipulation tasks as they provide a large acoustic radiation force and can be applied in various media. Here, we describe the design and fabrication of a 3 MHz, 64-element (8 × 8), 2D planar ultrasound array that realizes the multidimensional translation, rotation, orientation, and levitation of living cells and organisms. The focusing vortex and twin fields are generated using the holographic acoustic elements framework method. We demonstrate that the eggs and larvae of brine shrimp can be translated along a preset trajectory by controlling the central position of the vortex. By multiplexing counterclockwise vortices, clockwise vortices, and twin trap fields in a time sequence, the rotation direction of the shrimp eggs can be switched in real time, while non-spherical larvae can be reoriented. Moreover, the reflection of the acoustic beam can lift eggs and larvae from the bottom of the culture dish and further manipulate them in the vertical and horizontal directions. Additionally, we present quantitative analyses of the shrimp-egg rotation frequency with respect to the focal depths, topological charges of the vortex, and excitation voltages. These results indicate that acoustic tweezers based on 2D matrix arrays can realize complex and selective manipulation of living cells and organisms, thereby demonstrating their value for advancing research in the fields of cell assembly, tissue engineering, and micro-robot driving.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2022.3142774DOI Listing

Publication Analysis

Top Keywords

living cells
16
cells organisms
16
manipulation living
8
acoustic tweezers
8
eggs larvae
8
acoustic
6
acoustic manipulation
4
living
4
cells
4
organisms
4

Similar Publications

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode.

Anal Methods

November 2017

Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.

View Article and Find Full Text PDF

Objective: Long-term management of people living with HIV (PLWHs) often relies on CD4 T cell counts for assessing immune recovery, yet a single metric offers limited information. This study aimed to explore the association between the CD4/CD8 ratio and T lymphocyte activities in PLWHs.

Methods: 125 PLWHs and 31 HIV-uninfected controls (UCs) were enrolled and categorized into four groups based on their CD4/CD8 ratios: extremely low ratio (ELR) group: 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!