AI Article Synopsis

  • A new method using Selectfluor allows for the efficient synthesis of β-acyl allyl sulfones and β-acyl allyl benzotriazoles from common starting materials like acetophenones and aryl acetylenes.
  • DMSO is utilized as a dual-carbon source, enabling the creation of multiple carbon and sulfur or nitrogen bonds in a single reaction without the need for transition metals.
  • This technique is versatile, successfully producing a variety of compounds, including using acetylenes as an alternative starting material.

Article Abstract

A Selectfluor-mediated approach for the synthesis of β-acyl allyl sulfones/β-acyl allyl benzotriazoles with excellent atom economy from readily available acetophenones/aryl acetylenes, aryl sulfinates/benzotriazoles, and dimethyl sulfoxide (DMSO) is described. In this protocol, DMSO acts as a dual-carbon synthon, resulting in a transition-metal-free construction of two C-C and one C-S or two C-C and one C-N bonds in one pot. This approach is extended to generate chemically diverse compounds. Additionally, β-acyl allyl sulfones/β-acyl allyl benzotriazoles were prepared from acetylenes instead of acetophenones.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.1c02348DOI Listing

Publication Analysis

Top Keywords

β-acyl allyl
12
allyl sulfones/β-acyl
12
sulfones/β-acyl allyl
12
allyl benzotriazoles
12
synthesis β-acyl
8
dual-carbon synthon
8
allyl
6
selectfluor-mediated synthesis
4
benzotriazoles ketones/acetylenes
4
ketones/acetylenes aryl
4

Similar Publications

The absolute and relative configurations of bioactive chiral molecules are typically relevant to their biological properties. It is thus highly important and desirable to construct all possible stereoisomers of a lead candidate or a given bioactive natural compound. Synergistic dual catalysis has been recognized as a reliable synthetic strategy for a variety of predictable stereodivergent transformations.

View Article and Find Full Text PDF

Kinetic and structural investigation of the 4-allyl syringol oxidase from Streptomyces cavernae.

Arch Biochem Biophys

January 2025

Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany.

4-Phenol oxidases are proposed to be involved in the utilization of lignin-derived aromatic compounds. While enzymes with selectivity towards 4-hydroxyphenyl and guaiacyl motifs are well described, we identified the first syringyl-specific oxidase from Streptomyces cavernae (Sc4ASO) only very recently. Here, in-depth studies were conducted to unravel the molecular origins of the outstanding selectivity of Sc4ASO.

View Article and Find Full Text PDF

γ-l-Glutamyl-S-allyl-l-cysteine (GSAC) is renowned for its flavor-modifying effects and beneficial biological activities. However, the level of GSAC decreases significantly during the processing of black garlic, and the pathways and degradation products resulting from this decline remain unclear. To investigate the potential transformation mechanisms of GSAC in black garlic, simulation systems for thermal decomposition, Maillard reactions, and enzymatic hydrolysis were established.

View Article and Find Full Text PDF

The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.

View Article and Find Full Text PDF

A straightforward synthetic route towards DAB-1 scaffolded dimeric iminosugars is described here, starting from readily available bis-glycosylamines. The method allows the integration of a variety of linkages (aryl, alkyl, polyethyleneglycol chains) between both iminosugars through the choice of the bis-amine used in the first step. Moreover, an additional substituent (allyl, ethynyl) may be inserted into the structure via nucleophilic addition of an organometallic reagent to the starting bis-glycosylamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!