Detection of analytes in biological systems is pivotal to explore their physiological roles and provide diagnostic and treatment options for related diseases, which however remains a great challenge. Optical nanoprobes that exhibit absorption or fluorescence signal changes in response to the targets of interest have emerged as a versatile class of biosensors in the field. Polyethylenimine (PEI) with abundant amine groups plays indispensable roles in the construction of optical nanoprobes and mediating the sensing processes. After interaction with analytes, PEI-based optical nanoprobes can be induced to form aggregates, be disassembled or separated into individual units, or undergo structure/component alterations. As such, the optical properties of these nanoprobes have corresponding changes, allowing for sensitive and selective detection of a wide variety of analytes in biological environment. Up to now, detections of reactive oxygen species, pH, metal ions, biothiols, neurotransmitters, therapeutic agents, oxygen levels, enzyme activities, and virus/bacteria have been successfully demonstrated using PEI-based optical nanoprobes. Herein, we summarize the recent developments of PEI-based optical nanoprobes for biosensing applications and highlight the probe designs and sensing mechanisms. The existing challenges and prospects regarding biosensing applications of PEI-based optical nanoprobes are also briefly discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.0c00536 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!