A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stealth Polydopamine-Based Nanoparticles with Red Blood Cell Membrane for the Chemo-Photothermal Therapy of Cancer. | LitMetric

Stealth Polydopamine-Based Nanoparticles with Red Blood Cell Membrane for the Chemo-Photothermal Therapy of Cancer.

ACS Appl Bio Mater

College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.

Published: April 2020

Herein, we developed curcumin (Cur)-loaded porous poly(lactic--glycolic acid) (pPLGA) nanoparticles (NPs) by the nanoprecipitation method. Dopamine (DA) was then self-polymerized to form a polydopamine (PDA) layer on the surface of the NPs, yielding Cur@pPLGA/PDA NPs that are able to act as both chemotherapeutic and photothermal agents. These NPs were further camouflaged with the red blood cell membrane (RBCM) to construct RBCM-Cur@pPLGA/PDA NPs. The RBCM-pPLGA/PDA NPs were around 200 nm in size and demonstrated photothermal performance in the near-infrared (NIR) region, with a potent conversion efficiency (35.2%). The blank carrier has favorable cytocompatibility, but when drug loaded the NPs can efficiently induce the death of cancer cells (particularly when combined with NIR laser treatment). Cellular uptake results revealed greater uptake of RBCM-Cur@pPLGA/PDA NPs than bare Cur@pPLGA/PDA NPs in the case of cancer cells but reduced macrophage phagocytosis. studies in mice showed that the RBCM-Cur@pPLGA/PDA NPs exhibited prolonged blood circulation times and excellent photothermal properties, allowing tumor-specific chemo-photothermal therapy. The RBCM-Cur@pPLGA/PDA NP platform presents great potential for targeted synergistic cancer treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.0c00094DOI Listing

Publication Analysis

Top Keywords

rbcm-cur@pplga/pda nps
12
nps
10
red blood
8
blood cell
8
cell membrane
8
chemo-photothermal therapy
8
cur@pplga/pda nps
8
cancer cells
8
stealth polydopamine-based
4
polydopamine-based nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!