A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the Hierarchical Structure and Alignment of Wood Cellulose Fibers for Bioinspired Anisotropic Polymeric Composites. | LitMetric

Materials found in nature have their properties tuned by the chemical composition and hierarchical organization of their structures. Wood is one example of natural material which has properties tuned by its multi-scale hierarchical organization. The cellulose microfibril angle is critical for physical and mechanical properties of wood. On the other hand, polymeric composites containing fibrillar additives, like cellulose fibers, are widespread and have exceptional mechanical properties, which enable them to be used as structural materials. However, obtaining polymer composites with well-aligned cellulose fibers is a challenging task. This work aims to explore the hierarchical structure and alignment of cellulose fibers from wood in polymeric composites with anisotropic mechanical properties, inspired by what trees naturally do. In this sense, cellulosic material from wood was analyzed on a multi-scale; impregnation with polyethylene and densification were performed to form composites; and their mechanical properties were correlated with fiber angles in composite specimens. Moreover, polymer addition to the cellulosic backbone has tremendously increased the material resistance to wetting and chemical oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.0c00038DOI Listing

Publication Analysis

Top Keywords

cellulose fibers
16
mechanical properties
16
polymeric composites
12
hierarchical structure
8
structure alignment
8
properties tuned
8
hierarchical organization
8
properties
6
wood
5
cellulose
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!