Premise: Although maintaining the appropriate mid-day timing of the diel thermogenic events of cones of the dioecious cycads Macrozamia lucida and M. macleayi is central to the survival of both plant and pollinator in this obligate pollination mutualism, the nature of the underlying mechanism remains obscure. We investigated whether it is under circadian control. Circadian mechanisms control the timing of many ecologically important processes in angiosperms, yet only a few gymnosperms have been studied in this regard.
Methods: We subjected cones to different ambient temperature and lighting regimens (constant temperature and darkness; stepwise cool/warm ambient temperatures in constant darkness; stepwise dark/light exposures at constant temperature) to determine whether the resulting timing of their thermogenic events was consistent with circadian control.
Results: Cones exposed to constant ambient temperature and darkness generated multiple temperature peaks endogenously, with an average interpeak-temperature period of 20.7 (±0.20) h that is temperature-compensated (Q = 1.02). Exposure to 24-h ambient temperature cycles (12 h cool/12 h warm, constant darkness) yielded an interpeak-temperature period of 24.0 (±0.05) h, accurately and precisely replicating the ambient temperature period. Exposure to 24-h photo-cycles (12 h light/12 h dark, constant ambient temperature) yielded a shorter, more variable interpeak-temperature period of 23 (±0.23) h.
Conclusions: Our results indicate that cycad cone thermogenesis is under circadian clock control and differentially affected by ambient temperature and light cycles. Our data from cycads (an ancient gymnosperm lineage) adds to what little is known about circadian timing in gymnosperms, which have rarely been studied from the circadian perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajb2.1810 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of York, Chemistry, Heslington, YO105DD, York, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
A tandem catalytic ensemble of solid-state molecular organometallic (SMOM) crystalline pre-catalysts are deployed under batch or flow conditions for the ethene to propene process (ETP). These catalysts operate at ambient temperature and low pressure, via sequential ethene dimerization, butenes isomerization and cross-metathesis. Under flow conditions the on-stream ethene conversion (55%), initial propene selectivity (92%), stability (71% selectivity after 7 hrs) and low temperature/pressures are competitive with the best-in-class heterogenous systems, marking a new, in crystallo, approach to ETP.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, 81746-73441, Iran.
Biodiesel presents a sustainable alternative to fossil fuels, yet traditional homogeneous catalysts like sodium and potassium hydroxide face challenges with separation and reuse. Calcium oxide (CaO) is an effective heterogeneous catalyst for biodiesel production, but its chemical instability under reaction conditions restricts its long-term performance. This study introduces MOF-mediated synthesis (MOFMS) of heterogeneous catalysts, specifically CaO@ZnO and ZnO@CaO nanocomposites, from inexpensive and non-toxic metal salts and linkers in water.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Fayoum University, Fayoum, Egypt.
This research investigates the potential of utilizing types of construction waste as partial cement replacements within concrete formulations. Notably, granodiorite and ceramic powders were introduced at varying substitution ratios. The impact of these waste materials on the compressive strength and radiation shielding effectiveness of traditional concrete was evaluated under both ambient and elevated temperature conditions.
View Article and Find Full Text PDFInt J Hyg Environ Health
January 2025
NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China. Electronic address:
Background: Direct evidence linking ambient temperature to human fecundity is sparse. We aimed to evaluate the potential impact of ambient temperature on time to pregnancy (TTP) and identify the optimal temperature range for initiating conception attempts.
Methods: Our analysis included 576 927 couples from the Chinese National Free Preconception Health Examination Project (NFPHEP) in Yunnan Province, with a one-year follow-up post-enrollment.
J Plant Physiol
January 2025
Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain.
Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!