The reduced contraction capacity of palatopharyngeal muscle in OSAHS is related to the decreased intra-cellular [Ca] mediated by low RyR1 and DHPRα1s expression.

Sleep Breath

Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 of Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China.

Published: December 2022

Purpose: To aim of the study was to explore the possible mechanisms for the decreased contraction capacity of the palatopharyngeal muscle in cases with obstructive sleep apnea hypopnea syndrome (OSAHS).

Methods: Palatopharyngeal muscle specimens from patients with OSAHS were taken as the case group. Palatopharyngeal muscle tissue by surgical removal of oropharyngeal malignant tumors was used as a control cohort. The palatopharyngeal muscle contraction capacity was measured by assessing diaphragm peak-twitching force / cross-sectional area (Pt/CSA), fatigue index (FI) twitch tension, and force per cross-sectional area (Force/CSA). Myofibril and sarcoplasmic reticulum (SR) ultra-structures were observed by electron microscopy. The intra-cellular calcium concentration was measured by fluorescence spectrophotometry. DHPRα1s and RyR1 expression profiles were probed through RT-qPCR and Western blot, and the colocalization of them was determined by immunofluorescence.

Results: In comparison with the control cohort, the OSAHS cohort demonstrated decreased Pt/CSA (P < 0.01), FI twitch tension (P < 0.01), together with contraction capacity (P < 0.01). This cohort also had lower intra-cellular [Ca] of palatopharyngeal muscle cells with abnormal ultrastructure of sarcoplasmic reticulum (SR) (P < 0.01). In addition, transcriptomic (P < 0.01) and proteomic expression (P < 0.01) for RyR1 and DHPRα1s were markedly reduced within OSAHS cohort, although the degree of colocalization of them was not altered.

Conclusion: RyR1 and DHPRα1s downregulation may disrupt intra-cellular [Ca] homeostasis and subsequently decrease the palatopharyngeal muscle contraction capacity in patients with OSAHS, thus providing a novel insight into the pathogenesis of OSAHS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11325-022-02562-wDOI Listing

Publication Analysis

Top Keywords

palatopharyngeal muscle
20
contraction capacity
12
capacity palatopharyngeal
8
control cohort
8
force cross-sectional
8
cross-sectional area
8
palatopharyngeal
5
muscle
5
reduced contraction
4
muscle osahs
4

Similar Publications

Introduction: The core objective of this study was to precisely locate metastatic lymph nodes, identify potential areas in nasopharyngeal carcinoma patients that may not require radiotherapy, and propose a hypothesis for reduced target volume radiotherapy on the basis of these findings. Ultimately, we reassessed the differences in dosimetry of organs at risk (OARs) between reduced target volume (reduced CTV2) radiotherapy and standard radiotherapy.

Methods And Materials: A total of 209 patients participated in the study.

View Article and Find Full Text PDF

Background: Surface electromyography (sEMG) has been used in a wide range of studies conducted in the field of dysphagia.

Objectives: The main aim of this case-control study is to obtain how submental and infrahyoid sEMG signals differ based on residue, penetration and aspiration.

Methods: A total of 100 participants (50 patients with suspected dysphagia and 50 healthy controls) were enrolled in the present study.

View Article and Find Full Text PDF

The digastric muscle is a suprahyoid muscle that is composed of an anterior belly and a posterior belly, which originate from the first and second pharyngeal arches, respectively, and they are innervated by the nerves of these arches. The digastric muscles are involved in the elevation of the hyoid bone and depression of the mandible during mastication, speech, and swallowing. In this report, we present the rare case of bilateral accessory anterior belly of the digastric muscles (ABDMs) that originated from the digastric fossa, medial to the anterior bellies.

View Article and Find Full Text PDF

Objective: To compare the ototoxicity and survival in head and neck carcinoma patients treated with sequential (SEQ) and simultaneous integrated boost (SIB) of volumetric modulated arc therapy (VMAT).

Methods: This long-term prospective study enrolled patients with histologically confirmed head and neck carcinoma, all receiving VMAT treatment. Audiological assessments were done using various tests at baseline, two weeks, treatment completion, six months, and 12 months.

View Article and Find Full Text PDF

Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, , that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!