Chromonic nematic liquid crystals in a room-temperature ionic liquid.

Chem Commun (Camb)

Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Jordi Girona 18-26 08034, Barcelona, Spain.

Published: February 2022

Planar multiaromatic molecules hierarchically and selectively arrange into nematic chromonic liquid crystals in the room temperature ionic liquid 2-hydroxyethylammonium formate. In a proof of concept, these liquid crystals were used as reaction media to produce mesostructured silica materials under mild biomimetic conditions. Several other applications are envisaged.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cc05800bDOI Listing

Publication Analysis

Top Keywords

liquid crystals
12
ionic liquid
8
liquid
5
chromonic nematic
4
nematic liquid
4
crystals room-temperature
4
room-temperature ionic
4
liquid planar
4
planar multiaromatic
4
multiaromatic molecules
4

Similar Publications

Effective modifications for the buried interface between self-assembled monolayers (SAMs) and perovskites are vital for the development of efficient, stable inverted perovskite solar cells (PSCs) and their tandem photovoltaics. Herein, an ionic-liquid-SAM hybrid strategy is developed to synergistically optimize the uniformity of SAMs and the crystallization of perovskites above. Specifically, an ionic liquid of 1-butyl-3-methyl-1H-imidazol-3-iumbis((trifluoromethyl)sulfonyl)amide (BMIMTFSI) is incorporated into the SAM solution, enabling reduced surface roughness, improved wettability, and a more evenly distributed surface potential of the SAM film.

View Article and Find Full Text PDF

The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how enhanced oil recovery using carbon dioxide (CO) alters the properties of crude oil, specifically focusing on wax characteristics and viscosity changes.
  • As the treatment pressure increases from atmospheric levels to higher pressures (up to 25 MPa), notable changes in the composition of crude oil occur, including decreases in light hydrocarbons and increases in paraffins and wax.
  • Treatment with supercritical CO (scCO) leads to smaller wax crystal sizes and increased viscosity, with significant enhancements in gelation characteristics and wax precipitation temperatures, especially notable between pressures of 5 to 15 MPa.
View Article and Find Full Text PDF
Article Synopsis
  • Understanding microgel morphology is key for enhancing their functions in various applications, but traditional methods are often limited and low in efficiency.
  • A new bottom-up approach is introduced for creating unique non-spherical microgels from N-vinylcaprolactam using a specific liquid crystalline comonomer, allowing for more diverse shapes like multilobe, dumbbell, and raspberry forms.
  • By manipulating factors like LCM addition time, temperature, and solvent ratios, researchers can fine-tune microgel shapes, which are characterized using microscopy and light scattering techniques, and they show potential in solubilizing hydrophobic compounds like Nile Red.
View Article and Find Full Text PDF

Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!