A new universal force-field for the LiS-PS system.

Phys Chem Chem Phys

Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Kanagawa, Japan.

Published: January 2022

Lithium thiophosphate electrolyte is a promising material for application in all-solid-state batteries. molecular dynamics (AIMD) simulations have been used to investigate the ion conduction mechanisms in single-crystalline and glassy compounds. However, the complexity of real materials (, materials with grain boundaries and multiphase glass-ceramics) causes AIMD simulations to have high computational cost. To overcome this computational limitation, we developed a new interatomic potential for classical molecular dynamics (CMD) simulations of Li solid-state electrolytes. The training datasets were generated from representative sulfide electrolytes (β-LiPS, γ-LiPS, LiPS, LiPS, and LiPS crystals and 70LiS-30PS glass). Using the functional forms of the Class II and Stillinger-Weber potentials, all parameters were optimized by minimizing the differences in forces on atoms, stresses, and potential energies between the CMD and AIMD results. Subsequent validation showed that the optimized parameters can reproduce the dynamics of Li as well as the structures of the crystalline and glassy materials. The ionic conductivity of LiPS crystal was approximately five times that of the isostoichiometric 70LiS-30PS glass, indicating that CMD simulations using the developed force-field accurately reproduced the effective conduction path in LiPS from AIMD. The developed force-field parameters make it possible to simulate complex materials including amorphous-crystalline interfaces and multiphase glass-ceramics in the CMD framework.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp05393kDOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
aimd simulations
8
multiphase glass-ceramics
8
cmd simulations
8
lips lips
8
70lis-30ps glass
8
developed force-field
8
lips
5
universal force-field
4
force-field lis-ps
4

Similar Publications

Changes in the lipid and carbohydrate metabolism, adipokines, and growth factors during the development of metabolic disorders were studied in three mouse models: C57BL/6 (alimentary obesity), db/db (leptin-resistant obesity), and NOD (diabetes mellitus) lines. In the group of alimentary obesity, moderate fatty infiltration of the liver and hypertrophy of the adipose tissue, hyperglycemia, and increased concentrations of adiponectin, transforming growth factor β1 (TGF-β1), leptin, and cholesterol were detected. In the group of leptin-resistant obesity, multiple pathological changes in tissues, severe hyperglycemia and hyperleptinemia, hyperinsulinemia, and reduced concentrations of triglycerides, adiponectin, myostatin, and TGF-β1 were detected.

View Article and Find Full Text PDF

Transmembrane signaling receptors, such as integrins, organize as nanoclusters that provide several advantages, including increasing avidity, sensitivity (increasing the signal-to-noise ratio), and robustness (signaling threshold) of the signal in contrast to signaling by single receptors. Furthermore, compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, whether nanoclusters function as signaling hubs remains poorly understood.

View Article and Find Full Text PDF

The effects of termination functional groups of the TiCT MXene membrane on the structural and dynamics properties of nearby water molecules and foulants are investigated through molecular dynamics simulations. The simulation results show that a much denser water layer can be formed at the vicinity of hydroxyl (OH) termination than that near fluorine (F) or oxygen (O) termination. Particular focus is given to the molecular binding properties of β-d-mannuronic acid (M) and α-l-guluronic acid (G) alginate monomers on the MXene membrane surface with different termination groups.

View Article and Find Full Text PDF

Influence of nonequilibrium vibrational dynamics on spin selectivity in chiral molecular junctions.

J Chem Phys

January 2025

Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany.

We explore the role of molecular vibrations in the chirality-induced spin selectivity (CISS) effect in the context of charge transport through a molecular nanojunction. We employ a mixed quantum-classical approach that combines Ehrenfest dynamics for molecular vibrations with the hierarchical equations of motion method for the electronic degrees of freedom. This approach treats the molecular vibrations in a nonequilibrium manner, which is crucial for the dynamics of molecular nanojunctions.

View Article and Find Full Text PDF

Solvatochromic charge model of isonitrile probes for investigating hydrogen-bond dynamics with 2DIR spectroscopy.

J Chem Phys

January 2025

Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.

Isonitrile-derivatized amino acids are emerging as highly effective infrared (IR) probes for investigating the structures and dynamics of hydrogen (H)-bonds. These probes enable the quantification of chemical exchange processes in solute-solvent complexes via two-dimensional IR spectroscopy and hold significant promise for site-specific dynamic studies within proteins. Despite their potential, theoretical models that elucidate the solvatochromism of isonitriles remain underdeveloped.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!