Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Efficient utilization of solar energy to generate steam is a green and promising technology because of its great potential applications in seawater desalination and industrial wastewater purification. However, the practical application of high-efficiency solar steam generation devices is largely overshadowed due to their complex process, high cost, low life-span, and poor thermal performance. Here, novel meat and bonemeal biochar (MBB) with high solar steam generation efficiency is produced by pyrolyzing dead carp at 300, 400, and 500 °C under anoxic conditions. Attributed to its typical hydrophilic pore structure, the photon trapping ability of MBB500 is up to 97% and 84.1% in the ultraviolet and visible regions and near-infrared light regions, respectively. Meanwhile, hydrophilic pore structural provides a strong capillary force for the rapid transmission of water. As a result, under 1 sun illumination (1 kW m), the water evaporation rate and the apparent energy conversion efficiency of MBB500 reach 1.48 kg m h and 131.2%, respectively. In addition, MBB500 also exhibits excellent seawater and heavy metal wastewater evaporation effects, providing a new manufacturing strategy for photo-thermal materials, which greatly benefit their practical application in pure water regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727727 | PMC |
http://dx.doi.org/10.1002/gch2.202100083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!