Building multicellular microbial consortia that communicate with each other and perform programmed functionalities is the next milestone for synthetic biology. Achieving cell-cell communication within these communities requires programming of the transduction of an extracellular signal into a customized intracellular response. G-protein-coupled receptors (GPCRs) are attractive candidates for engineering signal transduction as they can sense extracellular events with high sensitivity and specificity and transduce them into complex intracellular programs. We recently developed a scalable cell-cell communication language based on fungal mating GPCRs and their secreted peptide ligands. This language allows the assembly of engineered yeast strains into multicellular communication networks and allows them to be made interdependent by peptide signaling. In peptide signaling, one cell secretes a peptide that supports the growth of another cell at nanomolar concentrations, a scalable approach for engineering interdependence. Here we address the challenge of correlating the doubling time of cells with an increasing external peptide concentration by linking GPCR activation to the expression of an essential gene. The required fine-tuning of downstream signaling is achieved via the transcriptional titration of a set of orthogonal GPCR-activated transcription factors, a series of corresponding promoters with different output dynamics, and the use of chemically recoded peptide ligands with varying activation potentials. As such, our work establishes three control points that allow the tuning of the basal and maximal activation of the GPCR response, fold change activation, and response sensitivity. The presented results enable the implementation of peptide-dependent and peptide-tunable growth but could also facilitate the design and calibration of more complex GPCR-controlled synthetic functionality in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811955 | PMC |
http://dx.doi.org/10.1021/acs.biochem.1c00661 | DOI Listing |
Plant Physiol Biochem
December 2024
College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:
With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.
View Article and Find Full Text PDFPlant Physiol
December 2024
Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic.
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.
View Article and Find Full Text PDFPLoS One
January 2025
School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Botany, University of Ghana, Legon, Ghana.
Cowpea is deemed as a food security crop due to its ability to produce significant yields under conditions where other staples fail. Its resilience in harsh environments; such as drought, heat and marginal soils; along with its nitrogen-fixing capabilities and suitability as livestock feed make cowpea a preferred choice in many farming systems across sub-Saharan Africa (SSA). Despite its importance, Cowpea yields in farmers' fields remain suboptimal, primarily due to biotic and abiotic factors and the use of either unimproved varieties or improved varieties that are not well-suited to local conditions.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!