Dipolar pathways in dipolar EPR spectroscopy.

Phys Chem Chem Phys

University of Washington, Department of Chemistry, Seattle, WA 98195, USA.

Published: January 2022

Dipolar electron paramagnetic resonance (EPR) experiments such as double electron-electron resonance (DEER) measure distributions of nanometer-scale distances between unpaired electrons, which provide valuable information for structural characterization of proteins and other macromolecular systems. To determine these distributions from the experimental signal, it is critical to employ an accurate model of the signal. For dilute samples of doubly spin-labeled molecules, the signal is a product of an intramolecular and an intermolecular contribution. We present a general model based on dipolar pathways valid for dipolar EPR experiments with spin-1/2 labels. Our results show that the intramolecular contribution consists of a sum and the intermolecular contribution consists of a product over individual dipolar pathway contributions. We examine several commonly used dipolar EPR experiments in terms of dipolar pathways and show experimental results confirming the theoretical predictions. This multi-pathway model makes it possible to analyze a wide range of dipolar EPR experiments within a single theoretical framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920025PMC
http://dx.doi.org/10.1039/d1cp03305kDOI Listing

Publication Analysis

Top Keywords

dipolar epr
16
epr experiments
16
dipolar pathways
12
dipolar
9
intermolecular contribution
8
contribution consists
8
epr
5
pathways dipolar
4
epr spectroscopy
4
spectroscopy dipolar
4

Similar Publications

Singlet fission in carotenoid dimers - the role of the exchange and dipolar interactions.

Phys Chem Chem Phys

January 2025

Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.

A theory of singlet fission in carotenoid dimers is presented which aims to explain the mechanism behind the creation of two uncorrelated triplets. Following the excitation of a carotenoid chain "bright" B+u state, there is ultrafast internal conversion to the intrachain "dark" 1B-u triplet-pair state. This strongly exchange-coupled state evolves into a pair of triplets on separate chains and spin-decoheres to form a pair of single, unentangled triplets, corresponding to complete singlet fission.

View Article and Find Full Text PDF

Recent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems.

View Article and Find Full Text PDF

Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules.

View Article and Find Full Text PDF

Efficient Orthogonal Spin Labeling of Proteins via Aldehyde Cyclization for Pulsed Dipolar EPR Distance Measurements.

J Am Chem Soc

January 2025

State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

Pulsed dipolar electron paramagnetic resonance (PD-EPR) measurement is a powerful technique for characterizing the interactions and conformational changes of biomolecules. The extraction of these distance restraints from PD-EPR experiments relies on manipulation of spin-spin pairs. The orthogonal spin labeling approach offers unique advantages by providing multiple distances between different spin-spin pairs.

View Article and Find Full Text PDF

Enabling structural biological electron paramagnetic resonance spectroscopy in membrane proteins through spin labelling.

Curr Opin Chem Biol

December 2024

BioEmPiRe Centre for Structural Biological EPR Spectroscopy, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK. Electronic address:

Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS), combined with site-directed spin-labelling, represents a powerful tool for the investigation of biomacromolecules, emerging as a keystone approach in structural biology. Increasingly, PDS is applied to study highly complex integral membrane protein systems, such as mechanosensitive ion channels, transporters, G-protein coupled receptors, ion pumps, and outer membrane proteins elucidating their dynamics and revealing conformational ensembles. Indeed, PDS offers a platform to study intermediate or lowly-populated states that are otherwise invisible to other modern methods, such as X-ray crystallography, cryo-EM, and hydrogen-deuterium exchange-mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!