Purpose: Our primary purpose was to search for computed tomography (CT) radiomic features of gastrointestinal stromal tumors (GISTs) that could potentially correlate with the risk class according to the Miettinen classification. Subsequently, assess the existence of features with possible predictive value in differentiating responder from non-responder patients to first-line therapy with Imatinib.

Methods: A retrospective study design was carried out using data from June 2009 to December 2020. We analyzed all the preoperative CTs of patients undergoing surgery for GISTs. We segmented non-contrast-enhanced CT (NCECT) and contrast-enhanced venous CT (CECT) images obtained either on three different CT scans (heterogeneous cohort) or on a single CT scan (homogeneous cohort). We then divided the patients into two groups according to Miettinen classification criteria and based on the predictive value of response to first-line therapy with Imatinib.

Results: We examined 54 patients with pathological confirmation of GISTs. For the heterogeneous cohort, we found a statistically significant relationship between 57 radiomic features for NCECT and 56 radiomic features for CECT using the Miettinen risk classification. In the homogeneous cohort, we found the same relationship between 8 features for the NCECT and 5 features for CECT, all included in the heterogeneous cohort. The various radiomic features are distributed with different values in the two risk stratification groups according to the Miettinen classification. We also found some features for groups predictive of response to first-line therapy with Imatinib.

Conclusions: We found radiomic features that correlate with statistical significance for both the Miettinen risk classification and the molecular subtypes of response. All features found in the homogeneous study cohort were also found in the heterogeneous cohort. CT radiomic features may be useful in assessing the risk class and prognosis of GISTs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11547-021-01446-5DOI Listing

Publication Analysis

Top Keywords

radiomic features
28
heterogeneous cohort
16
features
12
miettinen classification
12
first-line therapy
12
classification molecular
8
molecular subtypes
8
risk class
8
homogeneous cohort
8
groups miettinen
8

Similar Publications

Background: To develop and test the performance of a fully automated system for classifying renal tumor subtypes via deep machine learning for automated segmentation and classification.

Materials And Methods: The model was developed using computed tomography (CT) images of pathologically proven renal tumors collected from a prospective cohort at a medical center between March 2016 and December 2020. A total of 561 renal tumors were included: 233 clear cell renal cell carcinomas (RCCs), 82 papillary RCCs, 74 chromophobe RCCs, and 172 angiomyolipomas.

View Article and Find Full Text PDF

Objectives: This study aimed to develop a multimodal radiopathomics model utilising preoperative ultrasound (US) and fine-needle aspiration cytology (FNAC) to predict large-number cervical lymph node metastasis (CLNM) in patients with clinically lymph node-negative (cN0) papillary thyroid carcinoma (PTC).

Materials And Methods: This multicentre retrospective study included patients with PTC between October 2017 and June 2024 across seven institutions. Patients were categorised based on the presence or absence of large-number CLNM in training, validation, and external testing cohorts.

View Article and Find Full Text PDF

Objectives: The aim of this study was to determine the status of tertiary lymphoid structures (TLSs) using radiomic features in patients with invasive pulmonary adenocarcinoma (IA).

Methods: In this retrospective study, patients with IA from November 2015 to March 2024 were recruited from two independent centers (center 1, training and internal test data set; center 2, external test data set). TLS was divided into two groups according to hematoxylin-eosin staining.

View Article and Find Full Text PDF

Development and Validation of an Ultrasound-Based Clinical Radiomics Nomogram for Diagnosing Gouty Arthritis.

Ultrasound Med Biol

January 2025

Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Fuzhou University Affiliated Provincial Hospital, Department of Ultrasound, Fuzhou, Fujian Province, China. Electronic address:

Objective: This study aimed to develop and validate a diagnostic model for gouty arthritis by integrating ultrasonographic radiomic features with clinical parameters.

Methods: A total of 604 patients suspected of having gouty arthritis were enrolled and randomly divided into a training set (n = 483) and a validation set (n = 121) in a 4:1 ratio. Univariate and multivariate analyses were conducted on the clinical data to identify statistically significant clinical features for constructing an initial diagnostic model.

View Article and Find Full Text PDF

Background: Accurate preoperative prediction of vascular invasion in breast cancer is crucial for surgical planning and patient management. MRI radiomics has shown promise in enhancing diagnostic precision. This study aims to evaluate the effectiveness of integrating MRI radiomic features with clinical data using a deep learning approach to predict vascular invasion in breast cancer patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!