Arbuscular mycorrhizal (AM) symbiosis is a mutually beneficial interaction between fungi and land plants and promotes global phosphate cycling in terrestrial ecosystems. AM fungi are recognised as obligate symbionts that require root colonisation to complete a life cycle involving the production of propagules, asexual spores. Recently, it has been shown that Rhizophagus irregularis can produce infection-competent secondary spores asymbiotically by adding a fatty acid, palmitoleic acid. Furthermore, asymbiotic growth can be supported using myristate as a carbon and energy source for their asymbiotic growth to increase fungal biomass. However, the spore production and the ability of these spores to colonise host roots were still limited compared to the co-culture of the fungus with plant roots. Here we show that a combination of two plant hormones, strigolactone and jasmonate, induces the production of a large number of infection-competent spores in asymbiotic cultures of Rhizophagus clarus HR1 in the presence of myristate and organic nitrogen. Inoculation of asymbiotically-generated spores promoted the growth of host plants, as observed for spores produced by symbiotic culture system. Our findings provide a foundation for the elucidation of hormonal control of the fungal life cycle and the development of inoculum production schemes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8755765PMC
http://dx.doi.org/10.1038/s42003-021-02967-5DOI Listing

Publication Analysis

Top Keywords

arbuscular mycorrhizal
8
rhizophagus clarus
8
life cycle
8
asymbiotic growth
8
spores
6
production
5
asymbiotic
4
asymbiotic mass
4
mass production
4
production arbuscular
4

Similar Publications

Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are essential to plant community diversity and ecosystem functioning. However, increasing human land use represents a major threat to native AMF globally. Characterizing the loss of AMF diversity remains challenging because many taxa are undescribed, resulting in poor documentation of their biogeography and family-level disturbance sensitivity.

View Article and Find Full Text PDF

sly-miR408b Targets a Plastocyanin-Like Protein to Regulate Mycorrhizal Symbiosis in Tomato.

Plant Cell Environ

January 2025

Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China.

Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation.

View Article and Find Full Text PDF
Article Synopsis
  • Land use and agricultural practices significantly impact soil fungal communities, which in turn affect overall soil health.
  • A study examined fungal communities across different soil layers (up to 80 cm) in four types of boreal soils: organic crop rotation, conventional crop rotation, meadow, and forest.
  • Findings revealed that soil type influenced specific fungal groups, with forests showing higher beneficial fungi, meadows having more decomposing fungi, and crop rotations featuring increased plant pathogens, highlighting the need to analyze subsoils in soil health research.
View Article and Find Full Text PDF

Arbuscular Mycorrhizal Fungi as a Salt Bioaccumulation Mechanism for the Establishment of a Neotropical Halophytic Fern in Saline Soils.

Microorganisms

December 2024

Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil.

is a halophytic pantropical invasive fern growing in mangroves and swamps. Its association with arbuscular mycorrhizal fungi (AMF) has been reported in Asia. AMF and their symbiosis (AM) commonly colonise the absorption organs of terrestrial plants worldwide.

View Article and Find Full Text PDF

Arbuscular Mycorrhizal Fungi: Boosting Crop Resilience to Environmental Stresses.

Microorganisms

November 2024

State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

Amid escalating challenges from global climate change and increasing environmental degradation, agricultural systems worldwide face a multitude of abiotic stresses, including drought, salinity, elevated temperatures, heavy metal pollution, and flooding. These factors critically impair crop productivity and yield. Simultaneously, biotic pressures such as pathogen invasions intensify the vulnerability of agricultural outputs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!