The Switch/Sugar Non-Fermenting (SWI/SNF) nucleosome remodeling complexes play important roles in normal development and in the development of various cancers. Core subunits of the SWI/SNF complexes have been shown to have oncogenic roles in acute myeloid leukemia. However, the roles of the unique targeting subunits, including that of Arid2 and Arid1b, in AML leukemogenesis are not well understood. Here, we used conditional knockout mouse models to elucidate their role in MLL-AF9 leukemogenesis. We uncovered that Arid2 has dual roles; enhancing leukemogenesis when deleted during leukemia initiation and yet is required during leukemia maintenance. Whereas, deleting Arid1b in either phase promotes leukemogenesis. Our integrated analyses of transcriptomics and genomic binding data showed that, globally, Arid2 and Arid1b regulate largely distinct sets of genes at different disease stages, respectively, and in comparison, to each other. Amongst the most highly dysregulated transcription factors upon their loss, Arid2 and Arid1b converged on the regulation of Etv4/Etv5, albeit in an opposing manner while also regulating distinct TFs including Gata2,Tcf4, Six4, Irf4 and Hmgn3. Our data demonstrate the differential roles of SWI/SNF subunits in AML leukemogenesis and emphasize that cellular context and disease stage are key in determining their functions during this process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095935 | PMC |
http://dx.doi.org/10.1038/s41375-021-01505-w | DOI Listing |
Clin Genet
December 2024
Imagine Institute, Paris, France.
Diagnostic wandering and delayed management are major issues in rare diseases. Here, we report a new Next-Generation Phenotyping (NGP) model for diagnosing Coffin Siris syndrome (CSS) on clinical photographs among controls and distinguish the different genotypes. This retrospective and prospective study, conducted from 1998 to 2023, included frontal and lateral pictures of confirmed CSS.
View Article and Find Full Text PDFAm J Med Genet A
June 2024
Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia, USA.
Coffin-Siris Syndrome (CSS, MIM 135900) is now a well-described genetic condition caused by pathogenic variants in the Bromocriptine activating factor (BAF) complex, including ARID1B, ARID1A, ARID2, SMARCA4, SMARCE1, SMARCB1, SOX11, SMARCC2, DPF2, and more recently, BICRA. Individuals with CSS have a spectrum of various medical challenges, most often evident at birth, including feeding difficulties, hypotonia, organ-system anomalies, and learning and developmental differences. The classic finding of fifth digit hypo- or aplasia is seen variably.
View Article and Find Full Text PDFAnn Clin Lab Sci
November 2023
Department of Pediatrics, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
Coffin-Siris syndrome (CSS) is a rare congenital disorder characterized by coarse facial features, intellectual disability or developmental delay, and aplasia or hypoplasia of the tips of the fifth finger and/or toes. Mutations in genes affecting the switch/sucrose non-fermenting ATP-dependent chromatin remodeling complex are reported to cause CSS. Here, we describe three CSS patients.
View Article and Find Full Text PDFTransl Cancer Res
November 2023
Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Background: Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death. Although novel treatment currently achieves a better response, the majority of HCC patients develop resistance and cannot benefit. Hence, novel biomarkers for guiding therapy and predicting the prognosis are needed.
View Article and Find Full Text PDFHum Genet
January 2024
Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!