We report rare simultaneous observations of columniform sprites and associated gravity waves (GWs) using the Transient Luminous Events (TLEs) camera and All-sky imager at Prayagraj (25.5° N, 81.9° E, geomag. lat. ~ 16.5° N), India. On 30 May 2014, a Mesoscale Convective System generated a group of sprites over the north horizon that reached the upper mesosphere. Just before this event, GWs (period ~ 14 min) were seen in OH broadband airglow (emission peak ~ 87 km) imaging that propagated in the direction of the sprite occurrence and dissipated in the background atmosphere thereby generating turbulence. About 9-14 min after the sprite event, another set of GWs (period ~ 11 min) was observed in OH imaging that arrived from the direction of the TLEs. At this site, we also record Very Low Frequency navigational transmitter signal JJI (22.2 kHz) from Japan. The amplitude of the JJI signal showed the presence of GWs with ~ 12.2 min periodicities and ~ 18 min period. The GWs of similar features were observed in the ionospheric Total Electron Content variations recorded at a nearby GPS site. The results presented here are important to understand the physical coupling of the troposphere with the lower and upper ionosphere through GWs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8755841 | PMC |
http://dx.doi.org/10.1038/s41598-021-03808-5 | DOI Listing |
Int J Sports Physiol Perform
January 2025
Sport Sciences Laboratory, Department of Human Movement Sciences, Federal University of São Paulo, Santos, SP, Brazil.
Purpose: To correlate speed and heat scores with anthropometric variables and lower-limb strength and power in professional surfers.
Methods: A total of 19 men participated in simulated competitions on different days. All surfed waves were scored, and each athlete's best 2 were used for their total heat score.
J Geophys Res Space Phys
December 2024
MLT Haystack Observatory Westford MA USA.
We use the TIEGCM-NG nudged by MAGIC gravity waves to study the impacts of a severe thunderstorm system, with a hundred tornado touchdowns, on the ionospheric and thermospheric disturbances. The generated waves induce a distinct concentric ring pattern on GNSS TIDs with horizontal scales of 150-400 km and phase speeds of 150-300 m/s, which is well simulated by the model. The waves show substantial vertical evolution in period, initially dominated by 0.
View Article and Find Full Text PDFTo investigate the excitation mechanism of ionospheric perturbations on Mars by the Neutral Gas and Ion Mass Spectrometer (NGIMS) onboard Mars Atmosphere and Volatile EvolutioN (MAVEN), we categorize ionospheric perturbations into three cases: (a) the ion-neutral coupling cases where ion and neutral perturbations are well coupled, (b) the ion-specific cases where ion perturbations move independently from neutrals, and (c) the coronal mass ejection cases associated with solar wind extreme events. A representative number of cases from total profiles are compared with a numerical model to determine the fraction that can be explained by an atmospheric gravity waves (GW). The neutral perturbations on the dayside at 170-190 km altitudes are in excellent agreement with the GW.
View Article and Find Full Text PDFSensors (Basel)
November 2024
MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
Laser link acquisition and pointing technique is one of the essential techniques for the inter-satellite laser interferometry for space-based gravitational waves detection and next-generation Earth gravity measurement missions. The first step of building up inter-satellite laser link is using an acquisition camera to capture the inter-satellite laser beam signals within a pre-scanning uncertain cone. Subsequently, high-precision angle measurement technology, namely differential wavefront sensing, is used to achieve a high pointing precision required.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!