Single cell arrays provide an accurate classification of analyte cells through an image-based analysis of cellular phenotypes. Light-guided cell retrieval from a single cell array is a promising approach for the rapid and simple sorting of difficult to distinguish cells. In this study, we developed a single cell array enclosed with a photodegradable hydrogel in microwells to enable both comprehensive image-based single cell analysis and light-guided cell retrieval. In this system, individual cells became trapped in the microwells together with the photodegradable hydrogel at a high cell density on a chip regardless of cell type, adhesiveness, and motility. Fluorescence-stained model cells and vaccinated dendritic cells were identified by microscopic imaging and then selectively released through the light-induced degradation of the cell-embedding hydrogels. The target cells were selectively retrieved with a purity of >95% from the cell mixture through rapid photorelease, and the retrieved cells were confirmed to grow normally. Our results provide proof-of-principle that the photoresponsive microwell array serves as a versatile tool for image-based cell sorting in cellular researches and the manufacturing processes of high-performance cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.0c00583DOI Listing

Publication Analysis

Top Keywords

single cell
20
cell array
12
photodegradable hydrogel
12
cell
11
cells
9
array enclosed
8
enclosed photodegradable
8
hydrogel microwells
8
image-based cell
8
light-guided cell
8

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!