The present work demonstrates an innovative strategy for robust water purification using an engineered aerogel membrane fabricated from biopolymers and task-specific Fe-Al-based nanocomposites. The as-prepared ethylenediaminetetraacetate dianhydride cross-linked chitosan- and agarose (7:3 weight ratio)-based aerogel membrane decorated with α-FeOOH- and γ-AlOOH-based nanocomposites was characterized using various analytical tools, which suggested formation of a highly stable network interconnected through covalent and electrostatic interactions. The optimized bionanocomposite-based aerogel (BNC-AG-0.1) membrane showed macroporous and partial unidirectional short-range channels with an ultralow density of 0.021 g·m, a high swelling ratio of 1974%, and a remarkable pure water flux of 19,228 L·m·h (>6-fold higher flux compared to the reported aerogel membranes). The aerogel membranes were successfully utilized for purification of diverse pollutants such as dyes, emerging pollutants (EPs), arsenate, and fluoride in a continuous flow method under gravitational force. The BNC-AG-0.1 membrane exhibits high rejection (95-98.6%) for both cationic and anionic dyes with a flux rate of 1150-1375 L·m·h and a rejection of 89-92% for EPs with a flux rate of 1098-1165 L·m·h. Moreover, the BNC-AG-0.1 membrane showed a of 102.45 mg·g (at pH 6.5) for As(V) with >93% rejection at a flow rate of 1000 L·m·h. Furthermore, the aerogel membrane showed an excellent removal efficiency (92%) of arsenic up to the 10th cycle and hence demonstrated as a potential adsorption-based membrane for arsenic-free potable water. On the other hand, the BNC-AG-0.1 membrane showed a of 81.56 mg·g (at pH 6.5) for F removal with >99% rejection at a flow rate of 250 L·m·h. When applied for real-water purification, approximately 4734 L of safe drinking water (the F concentration is less than the WHO permissible limit) per square meter of the aerogel membrane can be obtained with a flux rate of 250 L·m·h. Overall, the prepared aerogel membrane showed robust removal of a variety of contaminants with ultrafast water permeation and established excellent recyclability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.0c00630 | DOI Listing |
World J Microbiol Biotechnol
December 2024
School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
Neofusicoccum parvum is one of the most hazardous pathogens causing mango fruit decay. The present study utilized trans-2-hexenal (TH), a typical antifungal component of plant essential oils (EOs), to control N. parvum both in vivo and in vitro, and attempted to explore the mechanisms involved.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Multifunctional and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Personal thermal protection is crucial in extreme temperature environments, and the rising global temperatures present significant challenges in managing heat stress for individuals. Phase-change materials (PCMs) can absorb or release heat during phase transition to maintain a constant temperature, thus making them ideal innovative thermal protection materials. However, it is currently a bottleneck issue for using PCMs in wearable thermal protection systems due to a balance between the mechanical properties, latent heat, temperature resistance, and rapid response on demand.
View Article and Find Full Text PDFChemSusChem
December 2024
Institute for Building Energetics, Thermotechnology and Energy Storage (IGTE), University of Stuttgart, Pfaffenwaldring 31, 70569, Stuttgart, Germany.
Resorcinol-formaldehyde based carbon aerogel (CA) has been tailored to meet the requirements as a Fe-N-C carbon support, aiming to provide sufficient, inexpensive cathode catalysts for high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Therefore, different treatments of the aerogel are explored for optimal pore structure and incorporation of surface functionalities, which are crucial for Fe-N-C synthesis and electrochemical performance. Fe-N-Cs of differently modified aerogel are investigated in phosphoric acid electrolyte.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
Iridium (Ir) is the most active and durable anode catalyst for the oxygen evolution reaction (OER) for proton exchange membrane water electrolyzers (PEMWEs). However, their large-scale applications are hindered by high costs and scarcity of Ir. Lowering Ir loadings below 1.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Natural designs provide abundant inspirations for constructing structure regulated, performance enhanced and function enriched materials. An impressive 3D brush-like silk nanostructure (SNB) was designed and regulated via template-guided self-assembly approach in our previous work. While fundamental issues on template-guided self-assembly process to construct SNBs and followed by regulating flower-like silk nanostructure (SNF) mineralization have not been studied in detail yet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!