A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Copper-Cysteamine Nanoparticles as a Heterogeneous Fenton-Like Catalyst for Highly Selective Cancer Treatment. | LitMetric

Herein, for the first time, we report copper-cysteamine (Cu-Cy) nanoparticles having Cu instead of Cu as an efficient heterogeneous Fenton-like catalyst for highly selective cancer treatment. Initial measurements of Cu-Cy's hydroxyl radical generation ability show that it behaves as a Fenton-like reagent in the presence of HO (100 μM) at pH 7.4, and that its Fenton-like activity is dramatically enhanced under acidic conditions (pH 6.5 and 5.5). Notably, Cu-Cy exhibits high stability and minimal copper release during the Fenton-like reaction, demonstrating its potency as a heterogeneous Fenton-like catalyst with a low cytotoxic effect. Through extensive in vitro studies, Cu-Cy NPs are found to generate a significantly higher level of ROS, thereby causing significantly more destruction to cancerous cells than to normal cells without the need for exogenous additives, such as HO. To the best of our knowledge, the average IC-50 value of Cu-Cy to cancer cells (11 μg/mL) is the lowest among reported heterogeneous Fenton-like nanocatalyst so far. Additionally, compared to cancer cells, Cu-Cy NPs display substantially higher IC-50 value toward normal cells (50 μg/mL), suggesting high selectivity. Overall, Cu-Cy NPs can participate in heterogeneous Fenton-like activity with elevated HO under acidic conditions to produce significantly higher levels of hydroxyl radicals in cancer cells when compared to normal cells, resulting in selective cytotoxicity to cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.0c00098DOI Listing

Publication Analysis

Top Keywords

heterogeneous fenton-like
20
cancer cells
16
fenton-like catalyst
12
cu-cy nps
12
normal cells
12
fenton-like
8
catalyst highly
8
highly selective
8
selective cancer
8
cancer treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!