Cucurbit[7]uril-Anchored Porphyrin-Based Multifunctional Molecular Platform for Photodynamic Antimicrobial and Cancer Therapy.

ACS Appl Bio Mater

Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey.

Published: November 2019

Here we report a photoactive supramolecular assembly that is multifunctional and constructed by covalently linking four receptor molecules (cucurbit[7]uril) to a porphyrin derivative with suitable linkers. While this molecular platform serves very efficiently as a light-triggered broad-spectrum antibacterial agent, owing to its negligible dark cytotoxicity and the presence of host molecules (CB7), it can also be utilized as a vehicle to carry drug molecules for a combined chemo and photodynamic cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.9b00763DOI Listing

Publication Analysis

Top Keywords

molecular platform
8
cancer therapy
8
cucurbit[7]uril-anchored porphyrin-based
4
porphyrin-based multifunctional
4
multifunctional molecular
4
platform photodynamic
4
photodynamic antimicrobial
4
antimicrobial cancer
4
therapy report
4
report photoactive
4

Similar Publications

Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.

View Article and Find Full Text PDF

Enhanced nano-LC-MS for analyzing dansylated oral cancer tissue metabolome dissolved in solvents with high elution strength.

Anal Chim Acta

February 2025

Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, 333, Taiwan; Clinical Proteomics Core Laboratory, LinKou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan. Electronic address:

Background: Tissue metabolomics analysis, alongside genomics and proteomics, offers crucial insights into the regulatory mechanisms of tumorigenesis. To enhance metabolite detection sensitivity, chemical isotope labeling (CIL) techniques, such as dansylation, have been developed to improve metabolite separation and ionization in mass spectrometry (MS). However, the dissolution of hydrophobic derivatized metabolites in solvents with high acetonitrile content limits the use of liquid chromatography (LC) systems with small-volume reversed-phase (RP) columns.

View Article and Find Full Text PDF

Amidine-functionalized aggregation-induced emission luminogen and a 3D-printed digital sensor platform for ultrafast and visual detection of heparin.

Anal Chim Acta

February 2025

College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China.

Background: Heparin is a widely used anticoagulant in clinic. However, improper dosing can increase the risk of thromboembolic events, potentially leading to life-threatening complications. Clinic monitoring of heparin is very important for its use safety.

View Article and Find Full Text PDF

Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and AgS/SnS photoanode for ultrasensitive dimethoate sensing.

Anal Chim Acta

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:

Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.

View Article and Find Full Text PDF

Visible light-responsive enrofloxacin PEC aptasensor based on CN QDs sensitized BiOBr nanosheets.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:

Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!