Although combinational anticancer chemotherapies have been proven to improve the life expectancy of patients in the clinic, their full potential is severely limited by the additive toxicities of the drug molecules. Targeted drug delivery systems could alleviate this major limitation by the design of nanocarriers that can cocarry multiple drug molecules in order to augment drug synergism at the site of interest while reducing the systemic side effects. In this study, we report on a thermoresponsive polymer-coated liposome nanocarrier that is capable to cocarry two potent anticancer drugs and release them via a thermally triggered mechanism. A synthetic polymer ([poly(diethylene glycol) methacrylate--poly(oligoethylene glycol) methacrylate]--poly(2-ethylhexyl) methacrylate) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and was used as a thermoresponsive polymer coating shell on thermosensitive liposome carriers. The formulations were tested in vitro against two pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, and their cytotoxic potency was studied with respect to their targeted release properties as well as their biological interactions with cellular organelles. The polymer-modified liposomes (PMTLs) could cocarry and release Gemcitabine (Gem) and cisplatin (Cis) in a thermally controlled rate and were also found to exhibit specific hydrophobic interactions with the cell membranes above the temperature transition of the formulations. In addition, the nanocarriers were found to induce more than 10-fold improvement of the IC of both drugs, either as monotherapies or in combination, in both cell lines tested, in a temperature dependent manner. The proposed formulations constitute a potent nanomedicinal approach for the codelivery of multiple drug molecules and could find potential uses as thermally triggered drug delivery systems for precision medicine and oncology and also as modulators of drug efficacy at the cellular level owing to their unique interactions with the cell membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.9b00007 | DOI Listing |
Sci Rep
December 2024
Department of Drug Prohibition and Public Security, Criminal Investigation Police University of China, Shenyang, 110035, China.
Methamphetamine use disorder has emerged as a significant public health concern globally. This study endeavors to elucidate the alterations in expression changes of miRNAs in the plasma of methamphetamine use disorder and elucidate the alterations in miRNA expression in the plasma of individuals with methamphetamine use disorder and investigate the relationship between these differentially expressed miRNAs and the disorder itself, cravings for methamphetamine, and associated mental disorders. Furthermore, the study seeks to clarify the expression of downstream target molecules of specific miRNAs in the plasma of methamphetamine use disorder, assess the diagnostic utility of these miRNAs and their target molecules, explore their potential as biomarkers, and identify potential targets for the diagnosis and treatment of methamphetamine use disorder.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).
View Article and Find Full Text PDFNat Commun
December 2024
Department of Ophthalmology, Columbia University, New York, NY, USA.
Best1 and Best2 are two members of the bestrophin family of anion channels critically involved in the prevention of retinal degeneration and maintenance of intraocular pressure, respectively. Here, we solved glutamate- and γ-aminobutyric acid (GABA)-bound Best2 structures, which delineate an intracellular glutamate binding site and an extracellular GABA binding site on Best2, respectively, identified extracellular GABA as a permeable activator of Best2, and elucidated the co-regulation of Best2 by glutamate, GABA and glutamine synthetase in vivo. We further identified multiple small molecules as activators of the bestrophin channels.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.
View Article and Find Full Text PDFElife
December 2024
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of 'clients' (substrates). After decades of research, several 'known unknowns' about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!