Microbial keratitis is the main cause of corneal opacification and the fourth leading cause of blindness worldwide, with bacteria the major infectious agent. Recently, bacterial keratitis has become a serious threat due to routine use of antibiotics leading to selection of resistant and multidrug-resistant bacteria strains. New approaches for treatment of bacterial keratitis are necessary to outcome the increasing antibiotic resistance. Antimicrobial photodynamic therapy is based on three agents: photosensitizer, oxygen, and light radiation. This therapy has been successful for treatment of infections in different tissues and organs as well as against different type of infectious agents and no resistance development. Also, new photosensitizers are being developed that has increased the spectrum of therapeutic protocols for treatment of a number of infectious diseases. Thus, antimicrobial photodynamic therapy has an extraordinary potential for treatment of those bacterial keratitis cases that actually are not solved by traditional antibiotic therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2022.102717 | DOI Listing |
BMC Genom Data
January 2025
The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.
Objectives: Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, is frequently associated with multidrug resistance and global epidemic outbreaks, contributing significantly to morbidity and mortality in hospitalized patients. However, P. aeruginosa belonging to the sequence type (ST) 16 was rarely reported.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Hepatobiliary Diseases, Transplant Center, Zhongnan Hospital, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. Electronic address:
Multidrug-resistant (MDR) bacterial infections pose a severe threat to global public health and present significant challenges in the treatment of bacterial keratitis. The escalation of antimicrobial resistance (AMR) underscores the urgent need for alternative therapeutic strategies. In this study, we report the homogeneous synthesis of quaternized ultra-highly deacetylated chitosan (QUDCS) using a sequential acid-base combination approach.
View Article and Find Full Text PDFCurr Ther Res Clin Exp
December 2024
Department of Critical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
Background: Immunosuppressive agents like cyclosporine have proven effective in some pediatric cases, although there are limited case reports considering potential risks such as secondary infections.
Objective: This study investigated the safety and efficacy of Cyclosporine A in children who did not respond to high-dose corticosteroids combined with intravenous immunoglobulin (IVIG).
Methods: We reported four pediatric patients diagnosed with toxic epidermal necrolysis (TEN) received treatment at our institution.
Vet Ophthalmol
January 2025
Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.
Objective: To investigate the impact of dexamethasone on the antibiotic susceptibility of common ocular pathogens in dogs and identify safe antibiotic-steroid combinations for veterinary ophthalmology.
Methods: This study utilized 30 bacterial isolates of Staphylococcus pseudintermedius, Streptococcus canis, and Pseudomonas aeruginosa, collected from canine patients with suspected bacterial keratitis. The isolates were tested against 17 antibiotics in the presence of dexamethasone concentrations ranging from 0 to 2 mg/mL.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!