The gut microbiota of environmentally enriched mice regulates visual cortical plasticity.

Cell Rep

BIO@SNS Lab, Scuola Normale Superiore, 56126 Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy. Electronic address:

Published: January 2022

Exposing animals to an enriched environment (EE) has dramatic effects on brain structure, function, and plasticity. The poorly known "EE-derived signals'' mediating the EE effects are thought to be generated within the central nervous system. Here, we shift the focus to the body periphery, revealing that gut microbiota signals are crucial for EE-driven plasticity. Developmental analysis reveals striking differences in intestinal bacteria composition between EE and standard rearing (ST) mice, as well as enhanced levels of short-chain fatty acids (SCFA) in EE mice. Depleting the microbiota of EE mice with antibiotics strongly decreases SCFA and prevents activation of adult ocular dominance plasticity, spine dynamics, and microglia rearrangement. SCFA treatment in ST mice mimics EE induction of ocular dominance plasticity and microglial remodeling. Remarkably, transferring the microbiota of EE mice to ST recipients activates adult ocular dominance plasticity. Thus, experience-dependent changes in gut microbiota regulate brain plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.110212DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
ocular dominance
12
dominance plasticity
12
microbiota mice
8
adult ocular
8
plasticity
7
mice
6
microbiota environmentally
4
environmentally enriched
4
enriched mice
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!