A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Multidimensional Matrix Model for Predicting the Effects of Male-Biased Sex Ratios on Fish Populations. | LitMetric

A Multidimensional Matrix Model for Predicting the Effects of Male-Biased Sex Ratios on Fish Populations.

Environ Toxicol Chem

United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota.

Published: April 2022

Laboratory experiments have established that exposure to certain endocrine-active substances prior to and/or during the period of sexual differentiation can lead to skewed sex ratios in fish. However, the potential long-term population impact of biased sex ratio depends on multiple factors including the life history of the species and whether the ratio is male or female-biased. In the present study, we describe a novel multidimensional, density-dependent matrix model that analyzes age class-structure of both males and females over time, allowing for the quantitative evaluation of the effects of biased sex ratio on population status. This approach can be used in conjunction with field monitoring efforts and/or laboratory testing to link effects on sex ratio due to chemical and/or nonchemical stressors to adverse outcomes in whole organisms and populations. For demonstration purposes, we applied the model to evaluate population trajectories for fathead minnow (Pimephales promelas) exposed to prochloraz, an aromatase inhibitor, during sexual differentiation. The model also was used to explore the population impact in a more realistic exposure scenario in which both adult and early life stages of fish are exposed concurrently to prochloraz, which, in addition to altering sex ratio during development, can decrease vitellogenin and egg production in adult females. For each exposure scenario, the model was used to analyze total population size, numbers of females and of males, and sex specific recruitment of the F1 generation. The present study illustrates the utility of multidimensional matrix population models for ecological risk assessment in terms of integrating effects across a population of an organism even when chemical effects on individuals are manifested via different pathways depending on life stage. Environ Toxicol Chem 2022;41:1066-1077. Published 2022. This article is a U.S. Government work and is in the public domain in the USA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586198PMC
http://dx.doi.org/10.1002/etc.5287DOI Listing

Publication Analysis

Top Keywords

sex ratio
16
multidimensional matrix
8
matrix model
8
sex ratios
8
ratios fish
8
sexual differentiation
8
population impact
8
biased sex
8
exposure scenario
8
sex
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!