More than 32.5 million American adults suffer from osteoarthritis, and current treatments including pain medicines and anti-inflammatory drugs only alleviate symptoms but do not cure the disease. Here, we have demonstrated that a biodegradable piezoelectric poly(L-lactic acid) (PLLA) nanofiber scaffold under applied force or joint load could act as a battery-less electrical stimulator to promote chondrogenesis and cartilage regeneration. The PLLA scaffold under applied force or joint load generated a controllable piezoelectric charge, which promoted extracellular protein adsorption, facilitated cell migration or recruitment, induced endogenous TGF-β via calcium signaling pathway, and improved chondrogenesis and cartilage regeneration both in vitro and in vivo. Rabbits with critical-sized osteochondral defects receiving the piezoelectric scaffold and exercise treatment experienced hyaline-cartilage regeneration and completely healed cartilage with abundant chondrocytes and type II collagen after 1 to 2 months of exercise (2 to 3 months after surgery including 1 month of recovery before exercise), whereas rabbits treated with nonpiezoelectric scaffold and exercise treatment had unfilled defect and limited healing. The approach of combining biodegradable piezoelectric tissue scaffolds with controlled mechanical activation (via physical exercise) may therefore be useful for the treatment of osteoarthritis and is potentially applicable to regenerating other injured tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scitranslmed.abi7282 | DOI Listing |
Tissue Eng Regen Med
January 2025
Department of Biomedical Engineering, Dongguk University, Seoul, South Korea.
Background: Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function.
View Article and Find Full Text PDFOsteoarthritis (OA) is a degenerative joint disease that affects the entire joint and has been a huge burden on the health care system worldwide. Although traditional therapy and targeted cartilage cell therapy have made significant progress in the treatment of OA and cartilage regeneration, there are still many problems. Mesenchymal stem cells from various tissues are the most studied cell type and have been used in preclinical and clinical studies of OA, because they are more widely available, have a greater capacity for in expansion, and have anti-inflammatory and immunomodulatory properties compared to autologous chondrocytes.
View Article and Find Full Text PDFOsteochondral defects (OCD) pose a significant clinical challenge due to the limited self-repair capacity of cartilage, leading to pain, joint dysfunction, and progression to osteoarthritis. Cellular implantations of adult mesenchymal stem cells (MSCs) enhanced with treatment of factors, such as small molecule Kartogenin (KGN) to promote chondrogenic differentiation, are promising but these cells often encounter hypertrophy during differentiation, compromising long-term stability. Induced pluripotent stem cell-derived MSCs (iMSCs) offer greater proliferative and differentiation capacity than MSCs and may provide a superior source of cells for cartilage repair.
View Article and Find Full Text PDFIntroduction: Mesenchymal stem cell (MSC)-based therapies have emerged as a promising approach for treating articular cartilage injuries. However, enhancing the chondrogenic differentiation potential of MSCs remains a significant challenge. KDM6B, a histone demethylase that specifically removes H3K27me3 marks, is essential in controlling the maturation of chondrocytes.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!