Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetic micro-/nanorobots have been regarded as a promising platform for targeted drug delivery, and tremendous strategies have been developed in recent years. However, realizing precise and efficient drug delivery in vivo still remains challenging, in which the versatile integration of good biocompatibility and reconfiguration is the main obstacle for micro-/nanorobots. Herein, we proposed a novel strategy of magnetic biohybrid microrobot multimers (BMMs) based on (.) and demonstrated their great potential for targeted drug delivery. The spherical . cells around 3-5 μm were magnetized with FeO to fabricate biohybrid microrobots and then loaded with doxorubicin (DOX). Using magnetic dipolar interactions, the microrobot units could reconfigure into chain-like BMMs as tiny dimers, trimers, and so forth via attraction-induced self-assembly and disassemble reversibly via repulsion. The BMMs exhibited diverse swimming modes including rolling and tumbling with high maneuverability, and the rolling dimer's velocity could reach 107.6 μm/s (∼18 body length/s) under a 70 Gs precessing magnetic field. Furthermore, the BMMs exhibited low cell toxicity, high DOX loading capacity, and pH-triggered drug release, which were verified by chemotherapy experiments toward HeLa cancer cells. Due to the remarkable versatility and facile fabrication, the BMMs demonstrate great potential for targeted anticancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c16859 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!