A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a Charge-Implicit ReaxFF for C/H/O Systems. | LitMetric

Development of a Charge-Implicit ReaxFF for C/H/O Systems.

J Phys Chem Lett

Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.

Published: January 2022

Modeling chemical reactions in condensed phases is difficult. Interaction potentials (or force fields) like ReaxFF can perform this modeling with a high overall accuracy, but the disadvantage of ReaxFF is a low simulation speed arising from costly algorithms, in particular charge equilibration. Therefore, we reparametrized ReaxFF to incorporate Coulomb forces into other terms of the force field. Because of this change, our charge-implicit ReaxFF-CHO is >2 times faster than the original parametrization. Despite the lack of explicit electrostatic interactions, our potential can correctly model the reactions and densities of systems containing carbon, hydrogen, and oxygen atoms. We have used the new potential to simulate bombardment of trehalose by water clusters. It has been observed experimentally that these water projectiles can increase the sensitivity of secondary ion mass spectrometry by more than an order of magnitude, but no explanation for this phenomenon was given. Our simulations show that the increase in the intensity of the recorded signal coincides with the emission of trehalose-water complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785188PMC
http://dx.doi.org/10.1021/acs.jpclett.1c03867DOI Listing

Publication Analysis

Top Keywords

development charge-implicit
4
reaxff
4
charge-implicit reaxff
4
reaxff c/h/o
4
c/h/o systems
4
systems modeling
4
modeling chemical
4
chemical reactions
4
reactions condensed
4
condensed phases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!