Hypoxia-Induced Photogenic Radicals by Eosin Y for Efficient Phototherapy of Hypoxic Tumors.

ACS Appl Bio Mater

State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, P. R. China.

Published: December 2020

The current reported photosensitizers generally show a decreased reactive oxygen species (ROS) generation property under hypoxia conditions, which is the main reason for the clinical failure of photodynamic therapy (PDT) in treatment of solid tumors. Herein, for the first time, hypoxia-induced photogenic radicals by eosin Y (Eos) were reported for efficient phototherapy of hypoxic tumors. More importantly, Eos shows a higher ROS and radical production efficiency under hypoxia conditions than under normoxia conditions. The photogenic radicals were captured by electron paramagnetic resonance and further verified by ROS and radical probe. Introducing CoCl as a hypoxia inducer, the photoinduced therapy of the hypoxia cancer cell model and tumor-bearing mice indicated that bovine serum albumin-Eos in hypoxic tumor sites can produce even higher tumor toxicity, thereby crossing the clinical obstacles of hypoxic tumor therapy. This non-oxygen-dependent PDT may open up an avenue for fighting with hypoxia.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.0c01223DOI Listing

Publication Analysis

Top Keywords

photogenic radicals
12
hypoxia-induced photogenic
8
radicals eosin
8
efficient phototherapy
8
phototherapy hypoxic
8
hypoxic tumors
8
hypoxia conditions
8
ros radical
8
hypoxic tumor
8
hypoxia
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!