PEEK had been used to fabricate artificial bones by 3D printing widely, but it expressed unsatisfactory interlayer performance of 3D printing and weak compatibility with nano hydroxyapatite(nHA) due to the limits of molecular structures. Here an amorphous poly(aryl ether ketone) for 3D bone printing, PEK-CN, was designed and synthesized via nucleophilic substitution from 4,4'-difluorobenzophenone, phenolphthalein and 2,6-dichlorobenzonitrile, which possessed much stronger interlayer strength due to van der Waals force between polar groups(-CNs). Specifically, the stronger interlayer strength resulted in lower porosity(3% with 100% infill rate) and more comparable mechanical properties(the maximum tensile strength was ∼110 MPa) to cortical bone. Importantly, PEK-CN had passed in vitro cytotoxicity testing and samples of human mandible and maxillary bones based on PEK-CN were printed by fused deposition modeling(FDM) successfully. Moreover, PEK-CN/nHA composites were obtained to enhance bioactivity of resin, and PEK-CN without limits of crystal lattices expressed excellent compatibility with nano hydroxyapatite. Our work provided a high performance resin for 3D bone printing, which would bring better solutions for artificial bone materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.0c01044DOI Listing

Publication Analysis

Top Keywords

bone printing
12
amorphous polyaryl
8
polyaryl ether
8
nano hydroxyapatite
8
artificial bone
8
compatibility nano
8
stronger interlayer
8
interlayer strength
8
bone
5
printing
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!