A two-step methodology for simultaneous conjugation of DNA and poly(vinylpyrrolidone) (PVP) polymer to a single carbon quantum dot (CD) is demonstrated for the first time to fabricate a pH-responsive DNA-CD-PVP hybrid hydrogel. Cross-linking in the hydrogel was achieved using CD as the common nucleus through the formation of DNA I-motif conformation at neutral to acidic pH and noncovalent interaction of PVP that infuse self-healing and shape memory properties in the hydrogel. The hydrogel is capable of loading and sustained delivery of drugs for more than 2 weeks as demonstrated using a model drug, Hemin. The quenching of fluorescence of CD by Hemin was trackable even through simple visual monitoring, which showed that Hemin can diffuse from the loaded part to the unloaded part of the hydrogel during the self-healing process. Most significantly, the chosen CD generates reactive oxygen species (ROS) upon visible light irradiation, armoring the hydrogel with worthy antimicrobial activity. Biocompatibility of the DNA-CD-PVP hydrogel was established on human fibroblast cells, indicating their potential use in biomedical area pertaining to wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.0c01022 | DOI Listing |
Int J Biol Macromol
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
Most of the developed flexible hydrogel supercapacitors struggle to maintain their electrochemical stability and structural integrity under tensile strain. Therefore, developing a flexible supercapacitor with excellent mechanical properties and stable electrochemical performance under different strains remains a challenge. Based on the previous cartilage-like structure, we designed a new coarse nanofiber bundle and ordered network.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
Globally, traumatic injuries and severe hemorrhagic wounds resulting from natural disasters, wars, traffic accidents, and operation rooms, especially during birth, are among the most difficult humanitarian and economic problems. Thus, the priority in emergency medical treatment is reducing unexpected blood loss, which can significantly influence a patient's rescue and recovery speed. For the immediate cessation of bleeding in severe hemorrhagic wounds and to speed up their healing, environmentally friendly γ-ionizing irradiation technology was used to develop innovative natural-based hydrogels impregnated with traditional medicinal plant extracts (MPE) with proven hemostatic and bactericidal potential as potential dressings for hemostasis, infection control, and wound healing.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
A chicken protein hydrogel (HG) was enzymatically prepared and blended with a carnauba wax-based oleogel (OG) to form bigels (BG) in ratios of 50:50 to 90:10. These systems were infused with thyme essential oil (TEO) at 0.5 %, 1 %, and 2 % v/v to harness its antioxidant properties.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China; College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:
Biocompatible and degradable hydrogels are extensively utilized for the delivery and controlled release of bioactive agents. Chitosan/squid ring teeth protein (SRT) hydrogels (CH/SRTs) cross-linked by genipin were fabricated, and their gel properties and structural characteristics were analyzed across varying SRT contents. Additionally, the curcumin-release behavior of curcumin-loaded CH/SRTs (Cur-CH/SRTs) was evaluated.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.
This study investigates the use of acrylamide and Alyssum campestre seed gum (ACSG) to create hydrogel composites with enhanced electrical and mechanical properties by incorporating titanium carbide (TiC). The composites were analyzed through techniques such as FTIR, SEM, TEM, TGA, swelling, rheology, tensile, electrical conductivity, antibacterial, and MTT assays. XRD analysis showed that 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!