Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The biomimetic cell membrane camouflaged approach provides numerous opportunities in designing therapeutic platforms for various biomedical applications. It is necessary to understand the engineering of physicochemical properties on materials' surfaces for target biological functions to develop the next-generation anticancer nanomedicines. Herein, we envelope mesoporous silica nanoparticles (MSNs) with red blood cell (RBC) membrane ghosts to obtain MSN@RBC, which possesses significantly stronger physiological stability and longer circulation time than bare MSNs. The surface functionalization of the core material is a critical design parameter for RBC membrane coating efficiency. Therefore, various surface functionalization (-COOH, -SH, -NH) modifications were performed on MSNs. Compared with other groups, MSN-COOH possessed a better RBC membrane coating efficiency. Then, MSN-COOH of different particle sizes were coated by RBC-derived vesicle membranes. The results indicated that smaller types were able to last longer in blood circulation and accumulate more in target sites than the larger ones. Overall, MSN-ICG@RBC with surface functionalization of -COOH and optimized particle size of 60 nm led to efficient imaging-guided photothermal cancer treatment and could be potentially appealing to actual clinical applications in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.0c01014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!