Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Porous colloids have been shown to exert unique bioactivities for mediating lipid (fat) metabolism and thereby offer significant potential as anti-obesity therapies. In this study, we compare the capacity for two classes of colloids, that is, smectite clays (Laponite XLG, LAP; montmorillonite, MMT) and mesoporous silica (SBA-15 ordered silica; MPS), to impede intestinal lipid hydrolysis and provoke lipid and carbohydrate excretion through adsorption within their particle matrices. A two-stage gastrointestinal lipolysis model revealed the capacity for both smectite clays and MPS to inhibit the rate and extent of lipase-mediated digestion under simulated fed state conditions. Each system adsorbed more than its own weight of organic media (, lipid and carbohydrates) after 60 min lipolysis, with MMT adsorbing >10% of all available organics through the indiscriminate adsorption of fatty acids and glycerides. When co-administered with a high-fat diet (HFD) to Sprague-Dawley rats, treatment with MMT and MPS significantly reduced normalized rodent weight gain compared to a negative control, validating their potential to restrict energy intake and serve as anti-obesity therapies. However, - correlations revealed poor associations between digestion parameters and normalized weight gain, indicating that additional/alternate anti-obesity mechanisms may exist , while also highlighting the need for improved assessment methodologies. Despite this, the current findings emphasize the potential for porous colloids to restrict weight gain and promote anti-obesity effects to subjects exposed to a HFD and should therefore drive the development of next-generation food-grade biomaterials for the treatment and prevention of obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.0c00969 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!