To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.0c01004 | DOI Listing |
Biosensors (Basel)
December 2024
Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
The COVID-19 pandemic has prompted the need for the development of new biosensors for SARS-CoV-2 detection. Particularly, systems with qualities such as sensitivity, fast detection, appropriate to large-scale analysis, and applicable in situ, avoiding using specific materials or personnel to undergo the test, are highly desirable. In this regard, developing an electrochemical biosensor based on peptides derived from the angiotensin-converting enzyme receptor 2 (ACE2) is a possible answer.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, CO, USA, 80523; Department of Chemical and Biological Engineering, Colorado State University, CO, USA, 80523. Electronic address:
The COVID-19 pandemic highlighted the need for rapid and sensitive diagnostic tools. In this work, the Magnetophoretic Slider Assay (MeSA) was integrated with electrochemical detection (eMeSA) using screen-printed carbon electrodes for the first time for the detection of SARS-CoV-2 nucleocapsid protein (NP). A sandwich enzyme-linked immunosorbent assay (ELISA) was performed on streptavidin-labeled magnetic beads (MBs).
View Article and Find Full Text PDFSci Adv
December 2024
Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
The recent SARS-CoV-2 pandemic underscores the need for rapid and accurate prediction of clinical thrombotic events. Here, we developed nanoengineered multichannel immunosensors for rapid detection of circulating biomarkers associated with thrombosis, including C-reactive protein (CRP), calprotectin, soluble platelet selectin (sP-selectin), and D-dimer. We fabricated the immunosensors using fiber laser engraving of carbon nanotubes and CO laser cutting of microfluidic channels, along with the electrochemical deposition of gold nanoparticles to conjugate with biomarker-specific aptamers and antibody.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
ITODYS, CNRS, Université Paris Cité, F-75006 Paris, France.
Biosensors (Basel)
October 2024
Institute of Agricultural, Exact and Biological Sciences, Biological Sciences Department, Federal University of Triângulo Mineiro, Iturama 38280-000, Brazil.
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed a major challenge to global health. The development of fast, accurate, and accessible diagnostic methods is essential in controlling the disease and mitigating its impacts. In this context, electrochemical biosensors present themselves as promising tools for the efficient monitoring of SARS-CoV-2 infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!