A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermally Carbonized Porous Silicon for Robust Label-Free DNA Optical Sensing. | LitMetric

Thermally Carbonized Porous Silicon for Robust Label-Free DNA Optical Sensing.

ACS Appl Bio Mater

Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, Tennessee 37235 United States.

Published: January 2020

In this work, thermal carbonization is shown to provide the necessary surface passivation to enable highly robust DNA detection on a porous silicon (PSi) platform, overcoming previous corrosion challenges with detection of negatively charged biomolecules. The stability of thermally carbonized PSi (TCPSi), oxidized PSi (OPSi), and undecylenic acid-modified PSi (UAPSi) is compared in phosphate-buffered saline and during DNA sensing experiments. Reflectance measurements reveal an improvement in stability and DNA sensor response for TCPSi compared to OPSi and UAPSi. TCPSi exhibits a large positive sensor response with >90% DNA hybridization efficiency. In comparison, UAPSi shows a smaller positive DNA sensor response, likely lessened by a small corrosion effect, while OPSi exhibits a large negative sensor response, indicating significant induced PSi corrosion that confounds the ability of OPSi to yield meaningful readouts of DNA hybridization events. This work expands the application of TCPSi for its more widespread usage in sensing applications where competing substrate corrosion may influence device stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.9b01002DOI Listing

Publication Analysis

Top Keywords

sensor response
16
thermally carbonized
8
porous silicon
8
dna sensor
8
exhibits large
8
dna hybridization
8
dna
7
psi
5
carbonized porous
4
silicon robust
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!