Surface Functionalization of PTFE Membranes Intended for Guided Bone Regeneration Using Recombinant Spider Silk.

ACS Appl Bio Mater

Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, KTH - Royal Institute of Technology, Stockholm 114 21, Sweden.

Published: January 2020

Alveolar bone loss is usually treated with guided bone regeneration, a dental procedure which utilizes a tissue-separation membrane. The barrier membrane prevents pathogens and epithelial cells to invade the bone augmentation site, thereby permitting osteoblasts to deposit minerals and build up bone. This study aims at adding bioactive properties to otherwise inert PTFE membranes in order to enhance cell adherence and promote proliferation. A prewetting by ethanol and stepwise hydration protocol was herein employed to overcome high surface tension of PTFE membranes and allow for a recombinant spider silk protein, functionalized with a cell-binding motif from fibronectin (FN-silk), to self-assemble into a nanofibrillar coating. HaCaT and U-2 OS cells were seeded onto soft and hard tissue sides, respectively, of membranes coated with FN-silk. The cells could firmly adhere as early as 1 h post seeding, as well as markedly grow in numbers when kept in culture for 7 days. Fluorescence and scanning electron microscopy images revealed that adherent cells could form a confluent monolayer and develop essential cell-cell contacts during 1 week of culture. Hence, functionalized PTFE membranes have a potential of better integration at the implantation site, with reduced risk of membrane displacement as well as exposure to oral pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.9b00972DOI Listing

Publication Analysis

Top Keywords

ptfe membranes
16
guided bone
8
bone regeneration
8
recombinant spider
8
spider silk
8
membranes
5
bone
5
surface functionalization
4
ptfe
4
functionalization ptfe
4

Similar Publications

Direct Ink Writing 3D Printing Polytetrafluoroethylene/Polydimethylsiloxane Membrane with Anisotropic Surface Wettability and Its Application in Oil-Water Separation.

Polymers (Basel)

January 2025

State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.

View Article and Find Full Text PDF

Reconcentrating the Ionic Liquid EMIM-HSO Using Direct Contact Membrane Distillation.

Molecules

January 2025

Department of Chemical Engineering, Louisiana Tech University, 600 Dan Reneau Drive, P.O. Box 10348, Ruston, LA 71272, USA.

Adequate water supplies are crucial for missions to the Moon, since water is essential for astronauts' health. Ionic liquids (ILs) have been investigated for processing metal oxides, the main components of lunar regolith, to separate oxygen and metals. The IL must be diluted in the process.

View Article and Find Full Text PDF

Background: The expanded polytetrafluoroethylene (ePTFE) valved conduit (VC) has been reported for pulmonary valve replacement (PVR). The purpose of this study was to review long-term outcomes of our trileaflet ePTFE VC.

Methods: This multicenter study was performed with institutional review board approval from each institution.

View Article and Find Full Text PDF

Photodegradation of steroid hormone micropollutants with palladium-porphyrin coated porous PTFE of varied morphological and optical properties.

Water Res

December 2024

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

In flow-through reactors, the photodegradation rate can be improved by enhancing contact and increasing the photocatalyst loading. Both can be attained with a higher surface-to-volume ratio. While previous studies focused on thin membranes (30 - 130 µm) with small pore sizes of 20 - 650 nm, this work employed poly(tetrafluoroethylene) (PTFE) supports, of which pore sizes are in the order of 10 µm, while the porosities and thicknesses are variable (22.

View Article and Find Full Text PDF

The purpose of this case report is to examine the management of vestibular bone fenestration during alveolar socket preservation using the Periosteal Inhibition (PI) approach. Here, for the first time, the PI technique, which has been shown to be successful in maintaining intact cortical bone, is examined in the context of a bone defect. : After an atraumatic extraction of a damaged tooth, a vestibular bone fenestration was discovered in the 62-year-old male patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!