An efficient ruthenium-catalyzed -alkylation of amines, amides and sulfonamides has been developed employing novel pentamethylcyclopentadienylruthenium(II) complexes bearing the methylene linked bis(NHC) ligand bis(3-methylimidazol-2-ylidene)methane. The acetonitrile complex 2 has proven particularly effective with a broad range of substrates with low catalyst loading (0.1-2.5 mol%) and high functional group tolerance under mild conditions. A total of 52 -alkylated organonitrogen compounds including biologically relevant scaffolds were synthesized from (hetero)aromatic and aliphatic amines, amides and sulfonamides using alcohols or diols as alkylating agents in up to 99% isolated yield, even on gram-scale reactions. In the case of sulfonamides, it is the first example of -alkylation employing a transition-metal complex bearing NHC ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1ob02214h | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
Hydroxylamine (NHOH) is a key intermediate in the formation of numerous high value-added organonitrogen compounds. The traditional synthesis of NHOH requires the use of precious metals under high temperature conditions, which leads to high cost, high energy consumption, and environmental pollution. The NHOH-mediated cascade reaction integrates the electrochemical synthesis of NHOH and the chemical synthesis of organonitrogen compounds, offering a facile, green, and efficient alternative.
View Article and Find Full Text PDFFront Chem
December 2024
Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China.
Background: Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) influenced by multiple factors. Berberine, an isoquinoline alkaloid derived from the root and bark of Franch., has shown promise in managing UC, but its underlying mechanisms remain unclear.
View Article and Find Full Text PDFDev Biol
March 2025
Genetics Unit, Department of Pathology, Faculty of Medicine University of Porto (FMUP), 4200-319, Portugal; CINTESIS@RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal. Electronic address:
Human oocytes are highly specialized cells with the capacity to store and regulate mRNAs during oocyte maturation, in preparation for post-fertilization steps. Here we performed single-oocyte transcriptomic analysis of human oocytes in three meitoic maturation stages - Germinal Vesicle (GV; n = 6), Metaphase I (MI; n = 6) and Metaphase II (MII; n = 7). Single-oocyte transcriptomic analysis revealed that the total number of expressed genes progressively decreased from GV to MII stages, with 9660 genes being transcribed in GV, 8734 in MI and 5889 in MII.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
Organosulfur and organonitrogen compounds (OrgSs and OrgNs) notably influence haze formation, reflecting the intricacies of sulfur and nitrogen chemistry in the atmospheric process. Despite this, a comprehensive understanding of OrgSs and OrgNs remains elusive. Here, we conducted molecular analyses of OrgSs and OrgNs in PM concurrently during three haze episodes in winter and summer from 2016 to 2019.
View Article and Find Full Text PDFAnal Chem
November 2024
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, United Kingdom.
Nontarget analysis (NTA) by liquid chromatography coupled to high-resolution mass spectrometry improves the capacity to comprehend the molecular composition of complex mixtures compared to targeted analysis techniques. However, the detection of unknown compounds means that quantification in NTA is challenging. This study proposes a new semi-quantitative methodology for use in the NTA of organic aerosol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!