A dynamic passive thermoregulation fabric using metallic microparticles.

Nanoscale

Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium.

Published: January 2022

Maintaining comfort using photonic thermal management textiles has a large potential to decrease the energy cost for heating and cooling in residential and office buildings. We propose a thermoregulating fabric using metallic microparticles, which provides a dynamic and passive control of the infrared transmission, by adapting to the ambient temperature and humidity. The fabric is composed of tailored metal microparticles and a stimuli-responsive polymer actuator matrix, in order to benefit from strong scattering effects to control the wideband transmission of thermal radiation and to provide a sharp, dynamic response. The detailed numerical design demonstrates a wide dynamic ambient setpoint temperature window of ∼8 °C, with the wearer staying comfortable in the range between 18 and 26 °C. Its compatibility for large-scale manufacturing, with a safe and strong thermoregulating performance indicates a vital energy-saving potential and paves the way to a more sustainable society.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr07390gDOI Listing

Publication Analysis

Top Keywords

dynamic passive
8
fabric metallic
8
metallic microparticles
8
dynamic
4
passive thermoregulation
4
thermoregulation fabric
4
microparticles maintaining
4
maintaining comfort
4
comfort photonic
4
photonic thermal
4

Similar Publications

In order to figure out the wall effect on the propulsive property of an auto-propelled foil, the commercial open-source code ANSYS Fluent was employed to numerically evaluate the fluid dynamics of flexible foil under various wall distances. A virtual model of NACA0015 foil undergoing travelling wavy motion was adopted, and the research object included 2D and 3D models. To capture the foil's moving boundary, the dynamic grid technique coupled with the overlapping grid was utilized to realize the foil's positive deformation and passive forward motion.

View Article and Find Full Text PDF

Analysis and Testing of a Flyable Micro Flapping-Wing Rotor with a Highly Efficient Elastic Mechanism.

Biomimetics (Basel)

December 2024

Centre for Aeronautics, Faculty of Engineering and Applied Sciences, Cranfield University, Bedford MK43 0AL, UK.

A Flapping-Wing Rotor (FWR) is a novel bio-inspired micro aerial vehicle configuration, featuring unique wing motions which combine active flapping and passive rotation for high lift production. Power efficiency in flight has recently emerged as a critical factor in FWR development. The current study investigates an elastic flapping mechanism to improve FWRs' power efficiency by incorporating springs into the system.

View Article and Find Full Text PDF

Context: Nontraumatic shoulder pain (NSP) is common in volleyball, affecting performance and well-being. It is more prevalent in female players. Previous studies lack comprehensive assessments of shoulder pain that consider multiple factors, including range of motion, muscle strength, joint position sense, dynamic stability, and volleyball-specific mechanics.

View Article and Find Full Text PDF

Rubber hand illusion (RHI) refers to the illusory sense of body ownership of a fake hand, which is induced by synchronous visuotactile stimulation to the real and fake hands. A negative correlation was reported between the cardiac interoception and the strength of RHI, but the subsequent studies have been unsuccessful in replicating it. On the other hand, voluntary action is suggested to link interoception and the sense of body ownership in different situations.

View Article and Find Full Text PDF

Dynamic 3D metasurface holography via cascaded polymer dispersed liquid crystal.

Microsyst Nanoeng

December 2024

College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.

Metasurface with natural static structure limits the development of dynamic metasurface holographic display with rapid response and broadband. Currently, liquid crystal (LC) was integrated onto the metasurface to convert the passive metasuface into an active one. But, majority of LC-assisted active metasurfaces often exhibit trade-offs among degree of freedom (DoF, typically less than 2), information capacity, response speed, and crosstalk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!