A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

analysis of growth rate evolution during molecular layer deposition of ultra-thin polyurea films using aliphatic and aromatic precursors. | LitMetric

Organic thin films formed by molecular layer deposition (MLD) are important for next-generation electronics, energy storage, photoresists, protective barriers and other applications. This study uses ellipsometry and quartz crystal microbalance to explore growth initiation and growth rate evolution during MLD of polyurea using aromatic -phenylene diisocyanate (PDIC) or aliphatic 1,6-hexamethylene diisocyanate (HDIC) combined with ethylenediamine (ED) or 1,6-hexanediamine (HD) co-reactants. During the first 10-20 cycles of growth, we show the growth rate can increase and/or decrease substantially depending on the substrate as well as the flexibility, length, and structure of the isocyanate and amine reactants used. The transition from initial to steady growth is attributed to a change in active surface site density as the growth proceeds, where the number of sites is determined by a balance between steric effects that block active sites, double reactions that consume multiple active sites, and precursor physisorption and sub-surface diffusion that create new active sites, where the extent of each mechanism depends on the precursors and deposition conditions. Results shown here provide useful insight into mechanisms needed to control growth of ultra-thin organic films for advanced applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt03689kDOI Listing

Publication Analysis

Top Keywords

growth rate
12
active sites
12
rate evolution
8
molecular layer
8
layer deposition
8
growth
7
analysis growth
4
evolution molecular
4
deposition ultra-thin
4
ultra-thin polyurea
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!