Theranostic systems that permit both diagnosis and treatment in vivo are highly appealing means by which to meet the demands of precision medicine. However, most such systems remain subject to issues related to complex molecular design and synthesis, potential toxicity, and possible photoactivity changes. Herein, a novel supramolecular theranostic strategy involving biomarker protein activation (BPA) and a host-guest strategy is proposed. To exemplify BPA, a facile "one-for-all" nanotheranostic agent for both albumin detection and cancer treatment is demonstrated, which utilizes a nanoparticulate heavy-atom-free BODIPY dye derivative (B4 NPs). The fluorescence and photoactivity of BODIPY dyes are completely suppressed by aggregation-induced self-quenching in the nanoparticulate state. However, a Balb/c nude mouse model is used to confirm that following the disassembly of injected B4 NPs, BODIPY specifically binds albumin in vivo, accompanied by significantly enhanced biocompatibility and photothermal conversion efficiency. More importantly, this supramolecular host-guest BPA strategy enables the resultant nanoplatform to act as a facile and efficient strategy for photodynamic and photothermal immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202109111DOI Listing

Publication Analysis

Top Keywords

supramolecular theranostic
8
theranostic strategy
8
photodynamic photothermal
8
photothermal immunotherapy
8
strategy
5
facile protein-derived
4
protein-derived supramolecular
4
strategy multimodal-imaging-guided
4
multimodal-imaging-guided photodynamic
4
immunotherapy vivo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!